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Generalized-linear dynamical models are useful for modeling time-series
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Most existing GLDM models and their associated learning algorithms only model a single source.

Some applications require joint modeling of two generalized-linear time-series.




Joint GL time-series have shared and private dynamics
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PGLDM (prioritized generalized-linear dynamical modeling): a multi-step, subspace
identification algorithm for explicitly modeling shared vs private dynamics between two
generalized-linear time-series




Partition dynamics using a block-structure latent model definition
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PGLDM multi-stage learning dissociates shared from private dynamics
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Stage 1. Given shared latent dimensionality n,, secondary projection z future, and primary projection r
past: learn the shared dynamics.




PGLDM multi-stage learning dissociates shared from private dynamics
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Stage 2. Given private latent dimensionality n, and primary projection r xz(<+)1 A; 0 0 x,”
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Stage 3. Given private latent dimensionality n; and secondary projection z future and past: learn the
dynamics private to z, {433, CgB)}.




Extending to the generalized-linear case using moment conversion

Algorithm relies on cross-covariances between future and past

intermediate linear observations r and z

r and z are latent in the generalized-linear case

Instead, primary and secondary generalized-linear time-series 4
y and t (potentially discrete) are observed

How can future-past cross-covariances H,, = Z;R}, and H, = R/R},
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be computed?

Empirically computable
future-past cross-covariances ——
(ex: V,Y})

(1.1

Yk+1| [A;n O 0 [[*k
B =421 A 0 [|xP]|+w
xD

z=[cY 0o c®]|xP|+e+d
L@
K
Vil i vir Vi 9(i))

~

Transformation
of Moments

—

Buesing et al., NeurlIPS, 2012

ti |z ~ Py (tx; h(zy))

Latent linear future-past
cross-covariances
(ex: R¢R})




Shared dynamics identified more accurately in simulations

PGLDM more accurately identified shared modes across most generalized-linear observation pairs

Primary time-series (r,oryx) / Secondary time-series (z, or ty)

Method Name Gaussian/Gaus.  Poisson/Gaus. Pois./Pois. Bernoulli/Gaus.
PGLDM (stage 1) -2.757 + 0.070 -2.707%+0.09 -1.969 +0.07 -2.864+ 0.072
Laplace-EM -1.320 + 0.09 -1.083 + 0.11 -1.088 +0.11 -1.027 + 0.067
PSID (stage 1) -2.985+ 0.102 X X X
Covariance SSID  -1.467 + 0.080 X X X
PLDSID X -1.319+ 0.132 -1.203 £ 0.112 X
bestLDS X X X -1.209 + 0.117
Normalied M — Ml
eigenvalue error [|M]],
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Modeling shared dynamics improves secondary time-series decoding performance
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Conclusions

We developed and validated PGLDM, a novel analytical subspace
identification algorithm for explicitly modeling shared vs private
dynamics between two generalized-linear time-series

Because PGLDM more accurately dissociated shared from private
dynamics, models learned by PGLDM more accurately decoded a
secondary time-series from a primary time-series using lower-
dimensional latent models

We also demonstrated that PGLDM can be used with any
combination of generalized-linear observation pairs -- as long as
there exists computationally tractable moment conversion equations
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Thank you for your attention!
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