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1.1 In-context learning

Foundation models have revolutionized the AI community in lots of fields.

The crux behind these large models is a very simple yet profound strategy named
autoregressive (AR) pretraining with transformers.

One of their most intriguing properties is the in-context learning (ICL) ability.

Unfortunate fact

However, the reason behind the emergence of ICL ability is still poorly understood.
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1.2 Mesa-optimization hypothesis

Nowadays, the mesa-optimization has become a popular hypothesis for explaining ICL.

Mesa-optimization hypothesis

Transformers learn some algorithms during the AR pretraining. In other words, the forward
pass of the trained transformers is equivalent to optimizing some inner objective functions on
the in-context data.

Our questions

1 When do mesa-optimization algorithms emerge in autoregressively trained transformers?

2 What is the capability limitation of the mesa-optimizer if it does emerge?
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1.3 Our contributions

Our contributions can be summarized as follows.

Our contributions

We propose a theoretical baseline to study the properties of the AR transformer.

We verify the empirical mesa-optimization hypothesis in such setup.
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2.1 Data distribution

We want to generate sequence (x1, . . . ,xT ) ∈ Cd×T according to the true distribution.

The start point x1 is sampled from some distribution Dx1 .

A unitary matrix W ∈ Cd×d is sampled uniformly from
PW = {diag(λ1, . . . , λd) | |λi| = 1,∀i ∈ [d]}.
Subsequent elements are generated as xt+1 = Wxt for t ∈ [T − 1].

Why this distribution?

Given (x1, . . . ,xt−1) sampled from this distribution, the optimal algorithm to predict xt is
optimizing the ordinary least squares (OLS) problem over {(x1,x2), . . . , (xt−2,xt−1)}, and
then using the estimated Ŵ to predict x̂t+1 = Ŵxt. We want to examine whether the
trained transformers can learn this optimal algorithm.
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2.2 Model

We study the one-layer linear casual attention with residual connection as follows.

Model computation:

f t(Et;θ) = et +W PV Et ·
E∗

tW
KQet

ρt
.

Embedding:

Et = (e1, . . . , et) =

0d 0d · · · 0d
x1 x2 · · · xt

x0 x1 · · · xt−1

 ∈ C3d×t.

Model output:

ŷt(Et;θ) = [f t(Et;θ)]1:d.
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2.3 Training algorithm

We consider the next-token prediction loss and its gradient flow.

L(θ) =

T−1∑
t=2

Lt(θ) =

T−1∑
t=2

Ex1,W

[
1

2
∥ŷt − xt+1∥22

]
,

d

dτ
θ = −∇L(θ).

Assumption 1 (Diagonal initialization)

At the initial time τ = 0, we assume that

WKQ(0) =

0d×d 0d×d 0d×d

0d×d 0d×d 0d×d

0d×d a0Id 0d×d

 ,W PV (0) =

0d×d b0Id 0d×d

0d×d 0d×d 0d×d

0d×d 0d×d 0d×d

 ,

where the red submatrices are related to the ŷt and changed during the training process.
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3.1 A data condition

We figure out a sufficient condition for the emergence of mesa-optimizer.

Assumption 2

We assume that the distribution Dx1 of the initial token x1 ∈ Rd satisfies
Ex1∼Dx1

[x1i1x
r2
1i2

· · ·xrn1in ] = 0 for any subset {i1, . . . , in | n ≤ 4} of [d], and r2, . . . rn ∈ N. In
addition, we assume that κ1 = E[x41j ], κ2 = E[x61j ] and κ3 =

∑
r ̸=j E[x21jx41r] are finite

constant for any j ∈ [d].

Example

We note that any random vectors x1 whose coordinates x1i are i.i.d. random variables with
zero mean and finite moments satisfy this assumption. For example, it includes the normal
distribution N (0d, σ

2Id), which is a common setting in the learning theory field.
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3.2 Convergence of the gradient flow

Theorem 1

Consider the gradient flow of the one-layer linear transformer over the population AR
pretraining loss. Suppose the initialization satisfies Assumption 1, and the initial token’s
distribution Dx1 satisfies Assumption 2, then the gradient flow converges toW̃KQ

22 W̃KQ
23

W̃KQ
32 W̃KQ

33

 =

(
0d×d 0d×d

ãId 0d×d

)
,
(
W̃ PV

12 W̃ PV
13

)
=
(
b̃Id 0d×d

)
.

Though different initialization (a0, b0) lead to different (ã, b̃), the solutions’ product ãb̃ satisfies

ãb̃ =
κ1

κ2 +
κ3
T−2

∑T−1
t=2

1
t−1

.
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3.3 Trained transformer is a mesa-optimizer

Corollary 1

We suppose that the same precondition of Theorem 1 holds. When predicting the (t+ 1)-th

token, the trained transformer obtains Ŵ by implementing one step of gradient descent for
the OLS problem LOLS,t(W ) = 1

2

∑t−1
i=1 ∥xi+1 −Wxi∥2, starting from the initialization

W = 0d×d with a step size ãb̃
t−1 .

Remark

The one-layer transformer learns to perform one step of GD to optimize the optimal objective.
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3.4 Capability limitation of the mesa-optimizer

Theorem 2

Let Dx1 be the multivariate normal distribution N (0d, σ
2Id) with any σ2 > 0, then the

”simple” AR process can not be recovered by the trained transformer even in the ideal case
with long training context.

Remark

This negative result shows that one-step GD learned by the AR transformer can not recover
the distribution. Future works are suggested to study more complex transformer architecture.
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Conclusion

Our contributions can be summarized as follows.

Our contributions

We propose a theoretical baseline to study the properties of the AR transformer.

We verify the empirical mesa-optimization hypothesis in such setup.
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