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Stereo vision

« Stereo vision estimates depth by
mimicking human binocular vision.

* |t computes the disparity between

images captured by each camera to
estimate the distance of objects.

» Applications: 3D reconstruction,
robotics, autonomous driving

Image source: en.ids-imaging.com
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Event-based vision

 Event cameras are novel visual sensors
that report intensity changes, providing

high dynamic range and high temporal
resolution.

 However, no event signals are triggered
when the scene is static or lacks texture.

Intensity images & Event signals

*Video courtesy of Elias Mueggler
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Event-Image Stereo

* Image-based cameras suffer from low dynamic range and low

temporal resolution. However, they always provide spatially
dense information.

« Events and images provide complementary information, making
them a good combination for a stereo system.

(Left view) (Right view)
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* Problem: Existing E.-l. A. S. datasets are not sufficient.
 Traditional methods — Limited performance

e Data-driven methods — Overfit on DSEC / MVSEC

e

B B
~r 8 ' ' H‘-ﬂlm

: - 3. &
= - -
! i

Frame (Left) EVent'(Right) Ground Truth i HSM
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Traditional Data-driven
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Motivation

 Surprisingly: Existing frame-based methods work very well!

* Frame-based SOTA methods can generalize to non-natural
images and even overcome large differences in appearance.
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~ Stereo | Input | Visual prompt | Model | Output
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« We design a “visual prompt”. an intermediate representation

that minimizes the appearance gap between images and event
streams.

Exposure
Time

Weight E :
Value : /
' 1

Exposure
Time

Representation Alignment
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« However, the stereo method is erroneous where events are

sparse. A frame-based monocular depth estimation model can
provide complementary information, but its output is relative.

Xposu
i
Weight E . . '
Value - ' - -
y. L

Exposure
Time

Monocular Model

)t

fc’i

S ———T—Y S W
|

Representation Alignment

Event-based fi Itermg

Stereo Model

.

Ima_ge-domain Model Inference

Monocular results
2 Dense
= Relative depth

Monocular results
& Absolute depth
= Sparse
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* We solve an optimization problem to fuse the relative

monocular results and the absolute stereo results. The refined
disparity only follows the stereo where events are dense.

Disparity Relative Depth Scale Map
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Representation Alignment Guided Disparity Refinement

lmage—domain Model Inference
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Results

» Our framework achieves state-of-the-art performance among all
zero-shot solutions.

* The frame-based stereo and monocular models used in the
framework can be seamlessly changed without any finetuning,
allowing for flexible upgrades as related fields advance.

o 1 -

'__4—; I -

Frame (Left) Event (nght) Ours-CR-Mi Ours-CR-DA Ours-DS-Mi Ours-DS- DA




Frame (Left)

Ours-DS-DA  Event (Right)
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Temporal Integ.
(Right)

Temporal Grad.

(Left) Ours-CR-DA

Frame & GT (Left) Event (Right)
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Thank You!

Lab page Code available

https://camera.pku.edu.cn https://github.com/HYLZ-2019/ZEST



