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Federated Learning
Low-bandwidth communication between parties

AIiBeijing 15 12 16 16 15 16
AIiShanghai 1.1—‘..1.%:. 12 15 15 15 16

AliShenzhen

When training a GPT-3 of 100 GB size, communicating time of
one round in distributed SGD, will be
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100GB/10MB/s = 10000 seconds = 2.8 hours!
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Bandwidth distribution
between cities [1]

[1] GossipFL: A Decentralized Sparsified and Adaptive Communication. In TPDS 202 2. Federated Learning Framework With
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Federated Learning -- FedAVG
Reducing communication rounds by local training

Algorithm 1 FederatedAveraging. The K clients are
indexed by k; B is the local minibatch size, E is the number

of local epochs, and 7 is the learning rate. Do local training for 100 iterations before communication.
Server executes:
initialize wo 2.8 hours x 100000 = 280000 hours = 32 years!
foreachround ¢t =1,2,... do

m < max(C - K, 1)
S; < (random set of m clients)

for each client k£ € S; in parallel do \-
wy, ; + ClientUpdate(k, w;) M
Wiy = S Mk 2.8 hours x 1000 = 2800 hours = 117 days!

ClientUpdate(k, w): // Run on client k
B < (split Py, into batches of size B)
for each local epoch 7 from 1 to £ do
for batch b € B do
w — w — nVe(w;b)
return w to server

It is still too long.
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One-shot Federated Learning (OFL)

How to improve FL performance under extremely low communication costs
with almost no extra computational and storage costs?
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One-shot Federated Learning (OFL)

How to improve FL performance under extremely low communication costs
with almost no extra computational and storage costs?

\ote or average as prediction
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Collecting all local models together Testing
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One-shot Federated Learning (OFL)

Low performance of directly averaging

CIFAR-10 SVHN CIFAR-100 Tiny-Imagenet

Heterogeneity a=0.1 a=0 a=0. a=0.5 a=0. a=0.5 a=0. a=0.5
FedAvg (OFL) 23.93 43.67 31.65 56.09 4.58 12.11 3.12 11.89

Ensemble 57.5 7991 6529 857 35.69 53.39 30.85 45.8
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WHY Low performance of directly averaging?

(d) Images and landmarks from 5 authors.

Each client has its own datasets without sharing. Datasets between clients have different data distribution,
called Non-Independent and Identically distributed (Non-1.1.D.) data. i.e. data heterogeneity.

[1] Federated Visual Classification with Real-World Data Distribution, ECCV 2020
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Waterbirds

CelebA

MultiNLI

Common training examples

y: waterbird
a: water
background

-
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y: blond hair
a: female

y: contradiction
a: has negation
(P) The economy
could be still better.
(H) The economy has
never been better.

y: landbird ‘
ey

a: land 3 Ve %

background ' *’
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y: dark hair -~ tvui.
a: male .

y: entailment

a: no negation

(P) Read for Slate's take
on Jackson's findings.
(H) Slate had an opinion
on Jackson's findings.

Test examples

y: waterbird
a: land
background

y: blond hair
a: male

y: entailment

a: has negation

(P) There was silence

for a moment.

(H) There was a short period
of time where no one spoke.

Examples of dataset bias [1,2]

[1] Distributionally Robust Neural Networks for Group Shifts. In ICLR 2020.

[2] Shortcut learning in deep neural networks. In Nature Machine Intelligence 2020.
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Understanding OFL -- Spurious Fitting T

Fitting on spurious features during local training

Common training examples Test examples

y: landbird y: waterbird

y: waterbird m '
a: water a: land 3 We % a: land
Waterbirds Packground ‘ background . j‘ A\ background
-’ & it . -4 <

) U

y: blond hair

FUUNUING S8U y: dark hair -~ twvup: y: blond hair

a: female a: male a: male
CelebA
y: contradiction y: entailment y: entailment
a: has negation a: no negation a: has negation
B (P) The economy (P) Read for Slate's take (P) There was silence
MultiNLI could be still better. on Jackson's findings. for a moment.
(H) The economy has (H) Slate had an opinion (H) There was a short period
never been better. on Jackson's findings. of time where no one spoke.
F Input: Land + LandBird Input: land + WaterBird
Prediction: WaterBird (0.01) Prediction: WaterBird (0.1)
T LandBird (0.99) LandBird (0.9)

Predict based mainly on Land
features (wrong)

Predict based on both Land and
Landbirds features

[1] Distributionally Robust Neural Networks for Group Shifts. In ICLR 2020.

[2] Shortcut learning in deep neural networks. In Nature Machine Intelligence 2020.
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Understanding OFL -- Spurious Fitting T

Fitting on spurious features during local training

Common training examples Test examples

y: landbird y: waterbird

y: waterbird m '
a: water a: land 3 We % a: land
Waterbirds Packground ‘ background . j‘ A\ background
-’ & it . -4 <

) U

y: blond hair

FUUNUING S8U y: dark hair -~ twvup: y: blond hair

a: female a: male a: male
CelebA
y: contradiction y: entailment y: entailment
a: has negation a: no negation a: has negation
B (P) The economy (P) Read for Slate's take (P) There was silence
MultiNLI could be still better. on Jackson's findings. for a moment.
(H) The economy has (H) Slate had an opinion (H) There was a short period
never been better. on Jackson's findings. of time where no one spoke.
F Input: Water + WaterBird Input: land + WaterBird
Prediction: WaterBird (0.99) Prediction: WaterBird (0.9)
T LandBird (0.01) LandBird (0.1)

Predict based mainly on

waterbirds features waterbirds features (correct)

; E Predict based on both water and
—

[1] Distributionally Robust Neural Networks for Group Shifts. In ICLR 2020.

[2] Shortcut learning in deep neural networks. In Nature Machine Intelligence 2020.



Understanding OFL - A Causal View
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Modeling invariant and spurious features in FL datasets

Common training examples

y: waterbird y: landbird e
a: water a: land 3w
Waterbirds Packground background P“;’ '

Test examples

y: waterbird
a: land
background

y: blond hair wewsess y: dark hair v twepg y: blond hair
a: female a: male a: male
CelebA ‘ |
4 |
y: contradiction y: entailment y: entailment
a: has negation a: no negation a: has negation
2 P) Th P) Read for Slate's tak P) There was silen
MultiNLI £01)11d bz esct(i)llll%ne]tyter. t()n)Ja:sson?s ﬁna;it;:;sfa ¢ gor)a mi;en‘f e
(H) The economy has (H) Slate had an opinion (H) There was a short period
never been better. on Jackson's findings. of time where no one spoke.
L —
- spu,
. X;: Water + WaterBird ~ R;"": Water
train . inv . .
Y;: WaterBird R:"V: WaterBird :
|1 1 H}: Neural
modules or
L —
. : Spu.
D2 X,: Land + LandBird R3P%: Land features
train :
. : 1nv. H
Y,: LandBird R™: LandBird
L—

[1] ]. Pearl. Causality. Cambridge university press, 2009.

Higher possibility
spu spu

of fitting on R;" "or R,
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ﬁ foatures
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(a) Isolated Training
& Ensemble

Structure Equation Model [1] of FL
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Enhancing model training with more features from other clients

: Water + WaterBird ~ R;™": Water
Derain Y, : WaterBird RInV: WaterBird o gt'tgll;;ro‘:l";j'bgﬂspu o fi‘t‘t’:’:’leg"o‘l’l";j‘bgf%spu
H,: Water, WaterBird f1 f1 fa
02 : Land + LandBird R;P%: Land m m m
fraim : LandBird Ry™: LandBird ﬁ _— ﬁ iﬁ:mmwnh
- Land, LandBird ﬁ features ﬁ i@f&i’?ﬂf i
: | Spu. ﬁ ﬁ :-__r RI’H ::l;}j;ures Filter out
D3 : Land + WaterBird R Land Hj H7 Jrsr'scatures
frain : WaterBird RIV: WaterBird
. Land, WaterBird @ @ e @ @ R @ @ e @ @ AT

I _ _ v = Y Y
H; may easily fit on Water instead of WaterBird and ! o 2 1 2
i Isolated Traini .
other common features of birds. () 1solated Training (b) Federated Fusion

H, + H, + Hs have more features about birds, thus having
more opportunities to predict birds based on features of birds.

[1] Understanding and improving feature learning for out-of-distribution generalization. In NeurIPS 2023.

[2] Can subnetwork structure be the key to out-of-distribution generalization? In ICML 2021.
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Understanding OFL - Mutual Information e (@) [0

Insights from information bottleneck [1]

Sufficient statistic: I(X;Y) = I(H(X);Y),

Minimal statistic: 7 (X) = arg min I(H(X); X). Better H means [2]: larger I(H;Y)
H(X) smaller I(H; X)
I(H(X); B?) < I(H(X); X) — I(X;Y).
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‘_'[:- 0.55 - ™4 -0 Local a=0.3 -7 Fus?on a=0.3 I:‘ 0.90 - e Training g:' 80 1
> —&— Local a=0.5 4 Fusiona=0.5 P G) — 75 -
= 0.50+ o 5 = >
- = 0.851 S|
5 0.451 5 B 70
5 040 S 00 65,
© 0.35- ® < 601
-E 0.30- -E 0.75- P 55
8 0.251 & F 501
0.20 1= ; : . . ; ; 0.70 1~ ; ; ; . ; ; ; : ; ; ; . ;
1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7
# Module Index # Module Index # Module Index

(a) Estimated MI I(H"*; X).  (b) Estimated MI I(H*;Y).  (c) The separability of layers.
Figure 2: Estimated MI and separability of trained models with non-IID datasets.

[1] Opening the black box of deep neural networks via information. Arxiv 2017.

[2] Emergence of invariance and disentanglement in deep representations. In JMLR 2018.
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FuseFL: Progressive FL. Model Fusion £

Design goals:

1. Keeping communication costs as same as one-shot FL.

2. Sharing feature extractors across all clients to enhance later model training.
3. Avoiding extra computation costs.

4. Avoiding extra storage costs. Higher possibility Lower possibility
of fitting on R1 Yor R,

spu spu

of fitting on R orR

f1 f2
i
R |

I
1
1
I
1
I
1
I
1
I
I
L

,Train with
1Augmented
' Features
mo N Feagy

- -T_ n Rinv Tes
1oand gy 1 Filter out

Ripufeatures
(a) Isolated Training (b) Federated Fusion
& Ensemble



FuseFL: Progressive FL Model Fusion Sy = X

Design goals:

1. Keeping communication costs as same as one-shot FL.

2. Sharing feature extractors across all clients to enhance later model training.
3. Avoiding extra computation costs.

4. Avoiding extra storage costs. Training Procedures of FuseFL:
For i-th block in all blocks:
(a) Local (Isolated) training [i: ] blocks;

.. i —— Data flow on local clients
- Training Frozen si‘::ﬁf,":ﬁ;f,a:segl?fﬂs ----» Data flow on other clients (b) Then, communicating all i-th blocks of all
Modules on clients. Clients concatenate these blocks as a

I reoaue o Adapter pataset g rerence clients new concated block. Then, clients append a

I1 Iiz {3 / new adapter before the next i+1-th block. All
ﬁ m m A blocks [:i] are frozen.

‘ : ! f Finally, freeze all modules and calibrate the
sl ea classifier.

J A A

1 1
] ]
i i

Deployment of FuseFL (inference stage): (d)

m HY| [ HL| [ HY]  the test data passes through all merged
| | modules and adapters.
) (0, (3, | P
(a) Isolated Training I (b) Fusing L1 & Training : (c) Fusing L2 & Training (d) Deployment
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Design goals:
eslg goa S ] . Benefits of FuseFL:
2. Sharing feature extractors across all clients. across all clients during local training,
3. Avoiding extra computation costs. mitigating the spurious fitting problem;
4. Avoiding extr r : i
oiding extra storage costs 2. The total communication costs are as same
as OFL;
- Training Frozen Communicated and —— Data flow on local clients
shared across Clients ----= Data flow on other clients : _
Modules on 3. We shrink the local module size as the local
WA Module ¥  Adapter Dataset B B difference clients dataset is smaller, not requiring the original
f1 f2 f3 f large module to learn;
A A
¢ m m ‘:} 4. We reduce the local training epochs to avoid

extra co mputation costs.
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5. The local modules can be heterogeneous.

H1 T 6. There is no extra privacy risks than FedAvg.

o
(D4 [Dz] [Dzj

(a) Isolated Training

o E};,s %
(D,) (D) !

(b) Fusing L1 & Training : (c) Fusing L2 & Training

(d) Deployment
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Default Exp configuration:
5 clients.
ResNet-18 for all clients.

Table 2: Accuracy of different methods across o = {0.1,0.3,0.5} on different datasets. Ensemble
means ensemble learning with local trained models, which is an upper bound of all previous methods
but impractical in FL due to the large memory costs and the weak scalability of clients. Thus, we
highlight the best results in bold font except Ensemble.

Dataset | MNIST | FMNIST | CIFAR-10 | SVHN | CIFAR-100 Tiny-Imagenet

Method | =01 a=03 a=0.5|a=0.1 a=03 a=05|a=0.1 =03 =05 ]| a=0.1 oa=03 a=0.5]| a=0.1 a=03 a=05 | a=0.1 a=03 a=0.5
FedAvg 4824 7294 9055 | 41.69 8296 R83.72 | 2393 27.72 43.67 | 31.65 6151 56.09 4.58 11.61 12.11 3.12 1046 11.89
FedDF 60.15 74.01 92.18 | 43.58 80.67 84.67 | 40.58 46.78 53.56 | 49.13 73.34 7398 | 28.17 30.28 36.35 | 1534 18.22 27.43

Fed-DAFL 64.38 74.18 9301 | 47.14 80.59 84.02 | 47.34 53.89 5859 | 5323 7656 78.03 | 2889 3489 38.19 | 1838 22.18 28.22
Fed-ADI 64.13 75.03 9349 | 4849 81.15 B84.19 | 4859 54.68 5934 | 5345 7745 78.85 | 30.13 35.18 40.28 | 19.59 2534 30.21
DENSE 66.61 7648 95.82 | 5029 8396 8594 | 5026 59.76 62.19 | 55.34 79.59 80.03 | 32.03 37.32 42.07 | 2244 28.14 32.34

Ensemble | 86.81 96.76 9722 | 67.71 8725 8942 | 575 7735 7991 | 6529 8831 857 | 3569 4941 5339 | 3085 39.43 4538

FuseFLK =2 | 97.02 9843 9854 | 83.15 89.94 8947 | 70.85 8141 84.34 | 76.88 91.07 90.87 | 34.07 4512 46.12 | 29.28 31.11 34.34
FuseFLK =4 | 97.19 9834 9829 | 83.05 8458 90.50 | 73.79 84.58 81.15 | 78.08 89.63 8934 | 36.86 4279 4930 | 27.63 33.04 3428
FuseFL K =8 | 96.66 9835 98.16 | 83.2 8857 88.24 | 7046 80.70 7499 | 80.31 88.88 89.94 | 3497 39.08 40.73 | 2521 32.59 33.82




Experiment Results £ e sespany

Support of heterogeneous models.
2 clients: ResNet10

2 clients: ResNet26

1 client: ResNet18

Avg: averaging concatenated features.
Conv1xl1: passes features through conv layer.

Table 3: Accuracy with FuseFL with
convl x1 or averaging to support heteroge-
neous model design on CIFAR-10.

non-IID degree | a=0.1 a=03 a=05

Ensemble | 575 77.35 79.91
FuseFL 73.79 84.58 81.15
FuseFL (Avg) 68.08 71.49 80.35
FuseFL-Hetero 75.33 81.71 82.71

FuseFL (Avg)-Hetero | 68.31 76.27 79.74
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Thanks for your time!

Q&A
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