Efficient Streaming Algorithms for Graphlet Sampling
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Graphlet Sampling (GS)

INPUT: a simple undirected graph G and k£ > 3
OUTPUT: a uniform random connected k-vertex subgraph of G (a k-graphlet)
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Graphlet Sampling (GS)

INPUT: a simple undirected graph G and k£ > 3
OUTPUT: a uniform random connected k-vertex subgraph of G (a k-graphlet) J

Applications:

@ sampling k-graphlets — k-graphlet
distribution — feature vector

.
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@ graph classification, graph kernels,
graph neural networks, clustered
federated learning...
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State-of-The-Art Algorithm

[Bressan, STOC 2021 and Algorithms 2023]

Two-phase uniform graphlet sampling

Preprocessing: Sampling:
G(v

oo

Degree-Dominating Order + Starting
Probabilities Random Grow + Rejection Sampling

O(nk? 4+ mlogn) time Expected k) logn time per graphlet
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State-of-The-Art Algorithm

[Bressan, STOC 2021 and Algorithms 2023]

Two-phase uniform graphlet sampling

Preprocessing: Sampling:
G(v

oo

Degree-Dominating Order + Starting

Probabilities Random Grow + Rejection Sampling
O(nk? 4+ mlogn) time Expected k) logn time per graphlet
Issue

Memory O(m) — to store the whole graph
@ E.g., Friendster: n =~ 6.8 x 107, m =~ 1.8 x 10°.
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Setting

Semi-Streaming Model
@ Edges can only be accessed through streaming passes
o 1 pass = scan the edge list sequentially in arbitrary order
@ Memory M = O(n)

Goal: use a “small” number of passes

(S1ITECCTTMN 1T MO EV AT e ISYeY ATl Streaming Algorithms for Graphlet Sampling

4/7



Setting

Semi-Streaming Model

@ Edges can only be accessed through streaming passes

o 1 pass = scan the edge list sequentially in arbitrary order
@ Memory M = O(n)

Goal: use a “small” number of passes

Challenges:
@ Cannot store the graph in memory!

@ Compute the order using o(n) passes?
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Contribution

Our Results

Streaming Algorithm

Preprocessing:
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1i€-Degree-Dominating

Qrder

O(logn) pass w.h.p.
O(mlogn) time
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Starting Probabilities

1 pass
O(nk?) time

Sampling:

v
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O(Mk=°®) parallel
samples w.h.p.

2k — 1 pass

O(M2*logn + mklogn)
time
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Our Results

Streaming Algorithm

Sampling:
Preprocessing:
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r--Degree-Dominating  Starting Probabilities O(Mk~®) parallel
Order samples w.h.p.

O(logn) pass w.h.p. 1 pass 2k — 1 pass
O(mlogn) time O(nk?) time O(M2*logn + mklogn)

time

Streaming Lower Bound

For k > 3, any p-pass streaming algorithm for GS requires Q (7/p) bits of memory.

@ Nearly space-optimal!
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Contribution

Experiments
Dataset [Kunegis, 2013] | File Size (MB)  #Vertices #Edges
Dense 1,858 20,000 159,993,472
NY Times 858 401,388 69,654,798
Twitter (WWW) 20,437 41,652,230 1,202,513,047
Twitter (MPI) 25,590 52,579,682 1,614,106,188
Friendster 32,300 68,349,466 1,811,849,343
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Contribution

Experiments

Dataset [Kunegis, 2013] | File Size (MB)  #Vertices #Edges
Dense 1,858 20,000 159,993,472
NY Times 858 401,388 69,654,798
Twitter (WWW) 20,437 41,652,230 1,202,513,047
Twitter (MPI) 25,590 52,579,682 1,614,106,188
Friendster 32,300 68,349,466 1,811,849,343
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Number of passes and memory versus ¢, fixing k = 4
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End

Thank You!
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