Efficient Streaming Algorithms for Graphlet Sampling

Yann Bourreau¹ Marco Bressan² T-H. Hubert Chan³ Qipeng Kuang³ Mauro Sozio⁴

¹CISPA. Saarland University

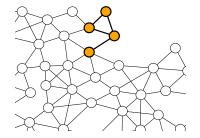
²University of Milan

³The University of Hong Kong

⁴Institut Polytechnique de Paris, Télécom Paris

Graphlet Sampling (GS)

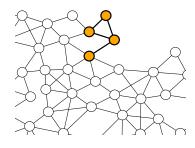
INPUT: a simple undirected graph G and $k \geq 3$ OUTPUT: a uniform random connected k-vertex subgraph of G (a k-graphlet)



Graphlet Sampling (GS)

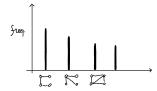
INPUT: a simple undirected graph G and $k \geq 3$

OUTPUT: a uniform random connected k-vertex subgraph of G (a k-graphlet)



Applications:

• sampling k-graphlets $\rightarrow k$ -graphlet distribution → feature vector



 graph classification, graph kernels, graph neural networks, clustered federated learning...

State-of-The-Art Algorithm

[Bressan, STOC 2021 and Algorithms 2023]

Two-phase uniform graphlet sampling

Preprocessing:

Degree-Dominating Order + Starting **Probabilities**

 $O(n k^2 + m \log n)$ time

Sampling:

Random Grow + Rejection Sampling

Expected $k^{O(k)} \log n$ time per graphlet

State-of-The-Art Algorithm

[Bressan, STOC 2021 and Algorithms 2023]

Two-phase uniform graphlet sampling

Preprocessing:

Degree-Dominating Order + Starting **Probabilities**

 $O(n k^2 + m \log n)$ time

Sampling:

Random Grow + Rejection Sampling

Expected $k^{O(k)} \log n$ time per graphlet

Issue

Memory O(m) – to store the whole graph

• E.g., Friendster: $n \approx 6.8 \times 10^7, m \approx 1.8 \times 10^9$.

Setting

Semi-Streaming Model

- Edges can only be accessed through streaming passes
 - 1 pass = scan the edge list sequentially in arbitrary order
- Memory $M = \tilde{O}(n)$

Goal: use a "small" number of passes

Setting

Semi-Streaming Model

- Edges can only be accessed through streaming passes
 - 1 pass = scan the edge list sequentially in arbitrary order
- Memory $M = \tilde{O}(n)$

Goal: use a "small" number of passes

Challenges:

- Cannot store the graph in memory!
- Compute the order using o(n) passes?

Our Results

Streaming Algorithm

Preprocessing:

 $\frac{1}{1+\epsilon}$ -Degree-Dominating Order $\tilde{O}(\log n)$ pass w.h.p. $O(m \log n)$ time

Starting Probabilities

1 pass $O(nk^2)$ time

Sampling:



 $\Theta(Mk^{-O(k)})$ parallel samples w.h.p. 2k-1 pass $O(M2^k \log n + mk \log n)$ time

Our Results

Streaming Algorithm

Preprocessing:

 $\frac{1}{1+\epsilon}$ -Degree-Dominating Order $O(\log n)$ pass w.h.p. $O(m \log n)$ time

Starting Probabilities

1 pass $O(nk^2)$ time

Sampling:

 $\Theta(Mk^{-O(k)})$ parallel samples w.h.p. 2k-1 pass $O(M2^k \log n + mk \log n)$ time

Streaming Lower Bound

For k > 3, any p-pass streaming algorithm for GS requires $\Omega(n/p)$ bits of memory.

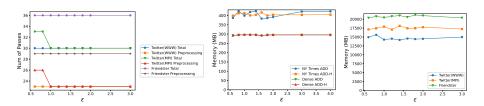
Nearly space-optimal!

Experiments

Dataset [Kunegis, 2013]	File Size (MB)	#Vertices	#Edges
Dense	1,858	20,000	159,993,472
NY Times	858	401,388	69,654,798
Twitter (WWW)	20,437	41,652,230	1,202,513,047
Twitter (MPI)	25,590	52,579,682	1,614,106,188
Friendster	32,300	68,349,466	1,811,849,343

Experiments

Dataset [Kunegis, 2013]	File Size (MB)	#Vertices	#Edges
Dense	1,858	20,000	159,993,472
NY Times	858	401,388	69,654,798
Twitter (WWW)	20,437	41,652,230	1,202,513,047
Twitter (MPI)	25,590	52,579,682	1,614,106,188
Friendster	32,300	68,349,466	1,811,849,343



Number of passes and memory versus ϵ , fixing k=4

Thank You!

