CISPA

HELMHOLTZ CENTER FOR
INFORMATION SECURITY

I
\\/
=

Spectral Graph Pruning Against Over-
Squashing and Over-Smoothing

Adarsh Jamadandi *'2 Celia Rubio-Madrigal *2, Rebekka Burkholz 2

"Universitat des Saarlandes  2CISPA Helmholtz Center for Information Security
* Equal contribution

cﬁ_ Over-squashing M
\ | o
Spectral : Against
Over-smoothing ﬁ -> .Cg = (ﬁ

Pruning



\\'/

-

-

Background

« GNNs |learn from graph-structured data

Training GNNs » message passing on input graph

Graph. Messages. Propagation.

Image from: D. Grattarola, “Graph Deep Learning” (2021). https://danielegrattarola.github.io/files/talks/2021-03-01-USI_GDL_GNNSs.pdf
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. Over-squashing
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Bottlenecks obstruct the flow of information during message passing

Bottleneck
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Image: On the Bottleneck of Graph Neural
....... Networks and its Practical Implications

Spectral gap: A4, — 4y (=4;)

Normalized Laplacian: Ly =1 — D~%/24 p~1/2

Small spectral gap = bottlenecks
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" Trade-off?

Do we need to balance over-squashing and over-smoothing?

‘ Over-squashing! Over-smoothing?

E No bottleneck!
Bottleneck =
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Zop s Braess Paradox Adding this extra road
causes delays (Braess, 1968)

- Not all edge additions increase
connectivity

+ Not all edge deletions decrease
connectivity

(Eldan et al.,, 2017) = there is a Braess
Paradox for the spectral gap of the
normalized Laplacian

We can
1. DELETE edges

2. INCREASE M\
(mitigating over-squashing)
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. Existence proof / Counterexample

1. The spectral gap increases (helping over-squashing)

2. The order of smoothing decreases (plot —) 0251 (
. 0.20 A
- Also in real-world datasets (Texas plot )
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- Two criteria for rewiring

Calculating the spectral gap is costly. Two suggestions:
1. Eldan’s sufficient criterion for the Braess paradox.

2. Proxy given by Matrix Perturbation theory (O(1)!)

Lemma 2.1. Eldan et al. (2017): Let G = (V, £) be a finite graph, with f denoting the eigenvector
and A\ (Lg) the eigenvalue corresponding to the spectral gap. Let {u,v} ¢ V be two vertices that

are not connected by an edge. Denote G = (v, £ ), the new graph obtained after adding an edge
between {u,v}, i.e., € == EU {u,v}. Denote with Py := (f, fo) the projection of f onto the top
eigenvector of §. Define g (u,v, Lg) :=

Vvid, +1—-+/d, .,

~PM(Lg) —2(1 -Al{ﬂg))( Jii1 v
+m—\/&fg)+ 2fute
Vd, +1 7" Vdy +1vd, + 1

If g (u,v,Lg) > 0, then A\1(Lg) > /\1{:1_',9%}.

A A+ Awy o ((fu — fo)* = A2+ £2)).
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Quality of approximation and runtime

Approximation compared to full calculation (black dots):
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- EldanAdd vos| ™= PR-Delete
921 = = FoSR | == EldanDelete
0 50 100 I]EOeraE;()onSZSO 300 350 6 5‘) literatgsons 2'0 2'5
Seconds compared to other literature:
Method Cora Citeseer Chameleon Squirrel
FoSR 4.69 5.33 5.04 19.48
SDRF 19.63 173.92 17.93 155.95
PROXYADD 4.30 3.13 1.15 9.12

PROXYDELETE 1.18 0.86 1.46 7.26
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We outperform baselines

Benchmarks for over-squashing and over-smoothing

Table 1: Results on Long Range Graph Benchmark datasets.

Method

PascalVOC-SP

Peptides-Func

Peptides-Struct

(TestF1 1) (Test AP 1) (Test MAE |)

Baseline-GCN 0.1268+0.0060  0.5930+0.0023  0.3496+0.0013
DRew+GCN 0.1848+0.0107  0.6996+0.0076 0.2781+0.0028
FoSR+GCN 0.21574£0.0057 0.6526+0.0014  0.2499+0.0006
ProxyAdd+GCN  0.2213+0.0011 0.6789+0.0002 0.2465+0.0004
ProxyDelete+GCN 0.2170+0.0015 0.6908+0.0007  0.2470+0.0080

Table 3: Node classification on Amazon-Ratings. Table 4: Node classification on Minesweeper.

Method #EdgesAdded  Accuracy  #EdgesDeleted  Accuracy  Layers Method #EdgesAdded  Accuracy  #EdgesDeleted  Test ROC  Layers

GCN - 47.20+0.33 47.20+£0.33 10 GCN - 88.57+ 0.64 88.57+ 0.64 10
GCN+FoSR 25 49.68+0.73 - - 10 GCN+FoSR 50 90.150.55 E E 10
GCN+Eldan 25 48.71+0.99 100 50.15£0.50 10 GCN+Eldan 100 90.11+0.50 50 89.49+0.60 10
GCN+ProxyGap 10 49.7240.41 50 49.75+0.46 10 GCN+ProxyGap 20 89.59+0.50 20 89.57+0.49 10
GAT B 47.43+0.44 47.43+0.44 10 GAT - 93.60+0.64 93.60+0.64 10
GAT+FoSR 25 51.36+0.62 . . 10 GAT+FoSR 100 93.14+0.43 - - 10
GAT+Eldan 25 51.68+0.60 50 51.80+0.27 10 GAT+Eldan 50 93.26+0.48 100 93.82+0.56 10
GAT+ProxyGap 20 49.06+0.92 100 51.72+0.30 10 GAT+ProxyGap 20 93.60+0.69 20 93.65+0.84 10
GCN B 47.32+0.59 47.32+0.59 20 GCN - 87.41+0.65 87.41+0.65 20
GCN+FoSR 100 49.57+0.39 . - 20 GCN+FoSR 100 89.64+0.55 - - 20
GCN+Eldan 50 49.66+0.31 20 48.32+0.76 20 GCN+Eldan 72 89.70+0.57 10 88.90+0.44 20
GCN+ProxyGap 50 49.480.59 500 49.58:0.59 20 GCN+ProxyGap 20 89.46+0.50 50 8935:0.30 20
GAT B 47.31+0.46 47.31+0.46 20 GAT - 93.92+0.52 93.92+0.52 20
GAT+FoSR 100 51.31+0.44 . . 20 GAT+FoSR 50 93.56+0.64 - - 20
GAT+Eldan 20 51.40+0.36 20 51.64+0.44 20 GAT+Eldan 10 93.92+0.44 20 95.48+0.64 20
GAT+ProxyGap 50 47.53+0.90 20 51.69+0.46 20 GAT+ProxyGap 20 94.89+0.67 20 94.64+0.81 20
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- Results for Graph Lottery Tickets

- Connecting fields with a GLTs
different objectives o ® \\ a
/ y o, (.\ O
- Deleting edges fights both PR ./V ‘e . ®
challenges, explaining success of GLT N e o ‘@ y

Table 3: Pruning for lottery tickets comparing UGS to our ELDANDELETE pruning and our PROX Y-
DELETE pruning. We report Graph Sparsity (GS), Weight Sparsity (WS), and Accuracy (Acc).

Method | Cora | Citeseer | Pubmed
Metrics | GS WS Acc | GS WS Acc | GS WS Acc
UGS 79.85% 97.86% 68.46+1.89 | 78.10% 97.50% 66.50+0.60 | 68.67% 94.52% 76.90+£1.83

ELDANDELETE-UGS | 79.70% 97.31% 68.73x0.01 | 77.84% 96.78% 64.60+0.00 | 70.11% 93.17% 78.00+0.42
PrROXYDELETE-UGS | 78.81% 97.24% 69.26+0.63 | 77.50% 95.83% 6543+0.60 | 78.81% 97.24% 75.25+0.25
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Summary

Over-squashing and Over-smoothing not a trade-off. Can be mitigated
simultaneously.

We |leverage Braess paradox to show deleting edges can also help alleviate
over-squashing and slow down the rate of detrimental over-smoothing.

We propose a computationally friendly spectral gap optimization scheme
to rewire graphs.

Additonally, as a bonus application we show our proposal can help identify
graph lottery tickets!
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