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Motivation

pth-root-link Poisson regression problem:
given X ∈ Rn×d with row vectors xi = (1, x(1)i , . . . , x(d−1)

i ), Y ∈ Nn
0,p ∈ {1, 2},

find β∗ ∈ argminβ∈D(0)
∑n

i=1
(xiβ)p − py log(xiβ) + log(y!),

where D(η) := {β | ∀i ∈ [n] : xiβ > η}.

Link functions: canonical log-link intractable in our setting [Molina et al.,
2018], so consider popular alternatives [Cochran, 1940]:

• ID-link (p = 1)
• square-root-link (p = 2)

Our Goal: reduce instance size n by subsampling. Preserve a
(1 + ε)-approximation. Hereby save computational resources such as

• data storage
• runtime
• energy
• etc. 1/5



Data Subsampling

Sensitivity sampling framework: [Langberg, Schulman, 2010]

• sample proportional to sensitivity scores
(relative contribution of single data points)

• main complexity parameters: VC dimension ∆, total sensitivity S

• sample size m ∈ Õ(∆S/ε2) yields (1 ± ε)-approximation

VC dimension bounds:

• O(d2) (complexity of evaluating the loss [Anthony, Bartlett, 2002])
• O(d log(n) log(ymax)/ε) ⊆ Õ(d/ε)

(grouping and rounding technique [Munteanu et al., 2018, 2022])

Bounding the sensitivity: pth-root-link requires to handle three intervals:

1. large xiβ ≥ y1/p
i (relate to the ℓp-norm (xiβ)p)

2. medium η < xiβ < y1/p
i (uniform sampling ✓)

3. small 0 < xiβ ≤ η (domain shift)
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Handling large xβ ≥ y1/p

Bounds on the (individual) loss gy(xβ):

• (xβ)p ≥ gy(xβ) ≥ (xβ−y1/p)p

λ

• λ = 1 for p = 2 ✓

• but λ ∈ Θ
(√

y
log(y)

)
required for p = 1

Novel complexity parameter ρ:

• ρ-complexity quantifies balance between upper and lower bound:

sup
β∈Rd

∑n
j=1 |xjβ|

p∑n
j=1 |xjβ − y1/p

j |
p ≤ ρ

• natural interpretation w.r.t. the Poisson model and optimization

Bounding the total sensitivity for all xiβ > η:

S ∈

O
(
ρd

√
ymax/log(ymax) + log log(1/η)

)
, for p = 1

O (ρd+ log (ymax) + log log(1/η)) , for p = 2.
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Handling small xiβ ≤ η

Domain shift:

• Problem: cannot bound the sensitivity for contributions close to zero
due to asymptote

• domain shift avoids this issue by optimizing over β ∈ D(η) ⊆ D(0)
• all β ∈ D(η) satisfy ∀i ∈ [n] : xiβ > η

Optimization over D(η):

• there exists a (1 + ε)-approximate solution in D(ε)
• sensitivity sampling preserves the loss up to another (1 + ε) factor

⇒ we can find β̃ ∈ D(ε) evaluated on the subsample that satisfies

f (Xβ̃) ≤ (1 + ε) f (Xβ∗), where β∗ ∈ argminβ∈D(0) f (Xβ).

Optimization requires the extreme points E on the convex hull:

• Worst case |E| = n
• Smoothed complexity: E [|E|] ∈ O

(
log1.5d−1(n)

σd
+ logd−1(n)

)
[Damerow, 2006]

• ε-kernel approximation: O( 1
ε

(d−1)/2
)

[Chan, 2004, Blum, Har-Peled, Raichel, 2019] 4/5



Limitations

General lower bounds:

• Ω(n) against (weighted) subsets of data
• Information theoretic Ω(n/ log(n)) against any data reduction

Dependence on parameters:

• For p = 1: λ ∈ Θ
(√

ymax/ log(ymax)
)

via novel bounds on the Lambert
W0 function improving over [Roig-Solvas, Sznaier, 2022]

• linear dependence on ρ and λ but d2 from VC dimension × sensitivity
• Θ̃(d) likely to suffice [Munteanu, Omlor, 2024]

Domain shift and the choice of p:

• Domain shift fails to preserve (1 + ε)-approximation for p ≥ 3
• Indicates that other techniques needed, if even possible
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