Abstract

Federated learning (FL)
encounters significant challenges
related to privacy and poisoning
attacks. Secure aggregation
enhances data privacy but
complicates anomaly detection, as
most methods require unencrypted
model updates. Current solutions
often depend on impractical non-
colluding two-server setups or
three-party computations, limiting
scalability. To address these
1ssues, we introduce the Dual
Defense Federated Learning
(DDFed) framework, which
improves privacy and mitigates
poisoning attacks without
changing FL topology or adding

new roles.

Contributions
&3 We introduce a dual defense

strategy that enhances privacy and
combats poisoning attacks by
integrating FHE-based secure
aggregation with a similarity-based
detection mechanism for malicious

encrypted models.

&4 A novel two-phase anomaly
detection mechanism 1s proposed,
featuring safeguards against
privacy breaches from Byzantine
clients, along with a clipping
technique to strengthen defenses

against diverse poisoning attacks.

&2 Comprehensive experiments
across multiple poisoning scenarios
validate DDFed's effectiveness in
protecting model privacy and
defending against threats.

N F

Runhua Xu”, Shiqgi Gao®, Chao Li", James Joshis, Jianxin Li”

ederated Learning

“Beihang University “Beijing Jiaotong University SUniversity of Pittsburgh

Dual Defense Federated Learning Framework
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FHE-based Secure Aggregation

DDFed necessitates that all clients pre-process their inputs for normalization
and shifts the task of comparing similarity scores to the client side. This 1s
because clients possess the FHE private key, allowing them to obtain the
similarity score in plaintext:
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where each client C; prepares the (t) - ||w(t o in advance.
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The aggregation server S verifies received [ ] and perturb local inputs
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and conducts secure inner- product computatlon as follows:
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FHE-based Secure Aggregation
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To mitigate this privacy risk, DDFed improves secure inner-product
computation by introducing perturbations (&, §)— differential privacy with a
Gaussian mechanism ) into each normalized and encrypted model update.

Figure 2: Comparison of defense effectiveness across various defense approaches,
evaluated on MNIST (top) and FMNIST(bottom), under IPM attack (left), ALIE attack (middle), and SCALING attack (right).
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Figure 5 Comparison of effectiveness across different client numbers, evaluated on MNIST (top)
and FMNIST (bottom), under IPM attack (left), ALIE attack (middle), and SCALING attack (right).

Figure 5. Impact of hyper-parameter € of differential privacy based
perturbation at secure similarity computation phase, evaluated on
MNIST (left) and FMNIST (right), under IPM attack.
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