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GD fails when η exceeds a critical value
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Deep linear networks for regression

� Deep linear networks
x 7→ WL . . .W1x ,

with x ∈ Rd and parameters W = {Wk ∈ Rdk×dk−1}1≤k≤L with dL = 1.

� Regression task: X ∈ Rn×d , y ∈ Rn , π? optimal regressor of minimal norm.

� Mean squared error:

RL(W) =
1

n
‖y − XW>

1 . . .W>
L ‖22 .

� Gradient descent (GD):
Wt+1 = Wt − η∇RL(Wt) .

� Notation: the sharpness S(W) is the largest eigenvalue of the Hessian of RL.
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Where does the critical learning rate value come from?

Damian, Nichani, Lee (2023)

GD implicitly solves

min
W

RL(W) such that S(W) ≤ 2

η
.

� Interpretation: GD cannot converge to a minimizer as soon as

η >
2

infW∈arg min(RL) S(W)
.

Theorem

inf
W∈arg min(RL)

S(W) ∼ 2La‖π?‖22 with a =
( π?

‖π?‖

)> X>X
n

π?

‖π?‖
.

5



Where does the critical learning rate value come from?

Damian, Nichani, Lee (2023)

GD implicitly solves

min
W

RL(W) such that S(W) ≤ 2

η
.

� Interpretation: GD cannot converge to a minimizer as soon as

η >
2

infW∈arg min(RL) S(W)
.

Theorem

inf
W∈arg min(RL)

S(W) ∼ 2La‖π?‖22 with a =
( π?

‖π?‖

)> X>X
n

π?

‖π?‖
.

5



Table of Contents

Maximal learning rate for gradient descent

Gradient flow from a small-scale initialization

Gradient flow from a residual initialization

6



Our setting

� Mean squared error:

RL(W) =
1

n
‖y − XW>

1 . . .W>
L ‖22 .

� Gradient flow (GF):
dWk

dt
(t) = − ∂RL

∂Wk
(t) .

� Initialization such that RL(W(0)) ≤ 1
n‖y‖22 and ∇RL(W(0)) 6= 0.

2 questions

. Convergence of gradient flow?

. Structure of the minimizer?
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Convergence of GF

Theorem (M. and Chizat, 2024)

The network satisfies the Polyak-Łojasiewicz condition for t ≥ 1, in the sense that there
exists some µ > 0 such that, for t ≥ 1,

L∑
k=1

∥∥∥ ∂RL

∂Wk
(t)

∥∥∥2
F
≥ µ(RL(W(t))− Rmin) .
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Structure of the minimizer

Corollary

Assume that 32L
√
ε ≤ 1 and that the data covariance matrix 1

n X>X is full rank with
smallest (resp. largest) eigenvalue λ (resp. Λ).

Then the gradient flow dynamics converge to a global minimizer WSI of the risk, such that

� for k ∈ {1, . . . ,L}, ‖W SI
k ‖2F − ‖W SI

k ‖22 ≤ ε , (rank-one)

� for k ∈ {1, . . . ,L},
(

‖π?‖2

2

)1/L
≤ σSI

k ≤
(
2‖π?‖2

)1/L
, (low-norm)

� for k ∈ {1, . . . ,L − 1}, 〈vSIk+1, uSI
k 〉2 ≥ 1− ε(

2‖π?‖2
)2/L , (alignment)

� 1 ≤ S(WSI)
Smin

≤ 4Λ
λ . (low-sharpness)
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