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Deep linear networks for regression

> Deep linear networks
z— Wg... Wiz,

with z € R? and parameters W = { W}, € R%X %1}, ;1 with df, = 1.

> Regression task: X € R™*¢, y ¢ R™, 7* optimal regressor of minimal norm.
2 Mean squared error:

1
REW) = —[ly = XWy ... W3

> Gradient descent (GD):
W1 = Wi —VREOW,) .

> Notation: the sharpness S(W) is the largest eigenvalue of the Hessian of RE.



Where does the critical learning rate value come from?

Damian, Nichani, Lee (2023)

GD implicitly solves
min RE(OW) suchthat S(W) <

ESHE

> Interpretation: GD cannot converge to a minimizer as soon as

2
ianearg min(RL) S(W) '

n >
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N . ™ ANTXTX 7*
SOW) ~ 2La||7*|2  with a:(HW*H)

in :
Wearg min(R%) n |7
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Our setting

2 Mean squared error:
1
RMOW) = ~ly = XW,T ... W[ |3

> Gradient flow (GF):
iw, . OR"

> Initialization such that RX(W(0)) < 1|/y||3 and VRE(W(0)) # 0.

> Convergence of gradient flow?

> Structure of the minimizer?



Convergence of GF

The network satisfies the Polyak-tojasiewicz condition for ¢ > 1, in the sense that there
exists some p > 0 such that, for ¢t > 1,

ZHSfVZ ) = HRHV(0) ~ R



Structure of the minimizer

Corollary

Assume that 32L./z < 1 and that the data covariance matrix %XTX is full rank with
smallest (resp. largest) eigenvalue \ (resp. A).

Then the gradient flow dynamics converge to a global minimizer W3 of the risk, such that



Structure of the minimizer

Corollary

Assume that 32L./z < 1 and that the data covariance matrix %XTX is full rank with
smallest (resp. largest) eigenvalue \ (resp. A).

Then the gradient flow dynamics converge to a global minimizer W3 of the risk, such that

> forke{1,...,L}, |WaI1% — | W23 < e, (rank-one)
s N1/L
> forke{1,...,L}, (@) <oy < (2||7r*||2)1/L7 (low-norm)
> forke{l,....,L—1}, (vgh,ugh)?>1- ;Q/L , (alignment)
(2ll7l2)

(low-sharpness)
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