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Section 1:
Introduction
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Continuous Diffusion Models
Introduction

(a) DALL∙E 3 (b) Stable Diffusion (c) AI4Science

Figure: Diffusion and flow‐based generative models have exerted huge impacts on
scientific research in many fields.
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Introduction
Problem Setting

Task: Sample from data distribution p0 accurately and efficiently

Forward SDE:

dxs = βs(xs)ds+ σsdws, with x0 ∼ p0

Backward SDE:

d ⃗xt =

[
− ⃗βt( ⃗xt) +

⃗σt ⃗σ⊤
t + ⃗υt ⃗υ⊤

t

2
∇ log ⃗pt( ⃗xt)

]
dt+ ⃗υtdwt

with ⃗p0 = pT ≈ N (0, I) and ⃗pT = p0

Score Function: sθt (xt) ≈ ∇ log pt(xt) by optimizing

L(θ) =
∫ T

0

ψtExt∼pt

[∥∥∇ log pt(xt)− sθt (xt)
∥∥2] dt

Implementations: SDE (υt = σt), Probability Flow ODE (PF‐ODE, υt ≡ 0)
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Introduction
Error Analysis

Take βs(xs) = −1

2
xs and σs = I :

Forward SDE: dxs = − 1
2xsds+ dws with x0 ∼ p0

Backward SDE: d ⃗xt =
[
1
2
⃗xt +

1+υ2

2 ∇ log ⃗pt( ⃗xt)
]

dt+ υdwt, with
⃗p0 = pT ≈ N (0, I) and ⃗pT = p0

Theorem (Error Analysis of Continuous Diffusion Models [BDBDD23])
Suppose t0 = 0 ≤ · · · ≤ tN = T − δ satisfies tk+1 − tk ≤ κ(T − tk+1) and

N−1∑
k=0

(sk+1 − sk)E ⃗xsk
∼ ⃗psk

[∥∥∥∇ log ⃗psk( ⃗xsk)− ⃗ŝθsk(xsk)
∥∥∥2] ≤ ϵ.

Then with

T = O(log(dϵ−1)), κ = O(d−1ϵ log−1(dϵ−1)), N = O(dϵ−1 log2(dϵ−1)),

we have
DKL(pδ∥q̂tN ) ≲ de−T + ϵ+ dκT ≲ ϵ.
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Introduction
Error Analysis

Theorem (Error Analysis of Continuous Diffusion Models [BDBDD23])
With

T = O(log(dϵ−1)), κ = O(d−1ϵ log−1(dϵ−1)), N = O(dϵ−1 log2(dϵ−1)),

we have
DKL(pδ∥q̂tN ) ≲ de−T + ϵ+ dκT ≲ ϵ.

Truncation Error: Error caused by approximating pT by p∞, of the order
O(d exp(−T ));
Approximation Error: Error caused by approximating ∇ log pt(xt) by NN
ŝθt (xt), assumed to be of O(ϵ);
Discretization Error: Error caused by numerically solving the backward
SDE, e.g. exponential integrator [ZC22].
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ŝθt (xt), assumed to be of O(ϵ);
Discretization Error: Error caused by numerically solving the backward
SDE, e.g. exponential integrator [ZC22].



Pa
ra
lle
liz
in
g
D
iff
us
io
n
—

H
.C
he
n,
Y.
Re
n,
L.
Yi
ng
,G
.R
ot
sk
off

8/21

Introduction
Inference Cost

Inference Cost

The evaluation of the score function sθt is expensive
The inference process of continuous diffusion models requires Õ(d) times
of score function evaluations

Possible Solutions
DDIM [SME20]
Higher‐order schemes [DVK22, KAAL22, LHE+24]
Operator learning [ZNV+23]
Knowledge distillation [LL21, MRG+23]
Consistency model [SDCS23, SD23, LS24]
Parallel sampling [SBE+24, TTL+24]



Pa
ra
lle
liz
in
g
D
iff
us
io
n
—

H
.C
he
n,
Y.
Re
n,
L.
Yi
ng
,G
.R
ot
sk
off

9/21

Section 2:
Algorithm
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Algorithm
Parallel Sampling

Picard Iteration
For k ∈ [0 : K − 1],

Solve ODE dxt = ft(xt)dt in parallel

x
(0)
t ≡ x0, and x

(k+1)
t := x0 +

∫ t

0

fs(x
(k)
s )ds

Simulate Langevin dynamics dxt = −∇V (xt)dt+ dwt in parallel [ACV24]

x
(0)
t ≡ x0, and x

(k+1)
t := x0 −

∫ t

0

∇V (x
(k)
t )ds+wt

Sample from diffusion models in parallel (This work)

dŷ(k+1)
tn,τ =

[
1

2
ŷ
(k+1)
tn,τ + sθtn+gn(τ)

(
ŷ
(k)
tn,gn(τ)

)]
dτ + dwtn+τ
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Algorithm
Parallel Sampling

Outer Iterations n: N = O(log d) blocks
q̂0 ≈ N (0, Id) q̂tN ≈ pdata

h0 h1 hn−1 hN−1 η

O(1)

k = 0

k = 1

k = K
Õ(d−1) or Õ(d−1/2)

...
...

Mn = Õ(d) or Õ(
√
d) parallalizable steps

q̂tn q̂tn+1

Inner
Iterations k:
K = Õ(log d)

depth

ϵn,0 ϵn,1 ϵn,M−1

Figure: Illustration of PIADM‐SDE/ODE.
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Section 3:
Main Results
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Main Results
Assumptions

Regularity of data distribution: p0 has finite second moment and is
normalized, i.e., covp0

(x0) = Id

Bounded learned score: The learned score sθt has bounded C1 norm with
Lipschitz const Ls.
δ‐accurate score estimation:

SDE The learned score sθ
t is L2([0, tN ]) δ‐accurate:

E ⃗p

[
N−1∑
n=0

Mn−1∑
m=0

ϵn,m

∥∥∥sθ
tn+τn,m

(
⃗xtn+τn,m

)
−∇ log ⃗ptn+τn,m

(
⃗xtn+τn,m

)∥∥∥2
]
≤ δ22 .

PF‐ODE The learned score sθ
t is L∞([0, tN ]) δ‐accurate:

E ⃗ptn+τn,m

[∥∥∥sθ
tn+τn,m

(
⃗xtn+τn,m

)
−∇ log ⃗ptn+τn,m

(
⃗xtn+τn,m

)∥∥∥2
]
≤ δ2∞.

Bounded true score (PF‐ODE): The true score ∇ log pt has bounded C1

norm with Lipschitz const Lp.
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Lipschitz const Ls.
δ‐accurate score estimation:
SDE The learned score sθ

t is L2([0, tN ]) δ‐accurate:

E ⃗p

[
N−1∑
n=0

Mn−1∑
m=0

ϵn,m

∥∥∥sθ
tn+τn,m

(
⃗xtn+τn,m

)
−∇ log ⃗ptn+τn,m

(
⃗xtn+τn,m

)∥∥∥2
]
≤ δ22 .

PF‐ODE The learned score sθ
t is L∞([0, tN ]) δ‐accurate:
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(
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(
⃗xtn+τn,m

)∥∥∥2
]
≤ δ2∞.

Bounded true score (PF‐ODE): The true score ∇ log pt has bounded C1

norm with Lipschitz const Lp.
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Main Results
SDE Implementation

Theorem (Parallel Acceleration for SDE Implementation)

Under assumptions aforementioned, given

T = O(log(dδ−2)), h = Θ(1), N = O
(
log(dδ−2)

)
,

ϵ = Θ
(
d−1δ2 log−1(dδ−2)

)
, M = O

(
dδ−2 log(dδ−2)

)
, K = Õ(log(dδ−2)),

we have the following error bound

DKL(pη∥q̂tN ) ≲ de−T + dϵT + δ22 + dTe−K ≲ δ2,

with a total of
KN = Õ

(
log2(dδ−2)

)
approximate time complexity

dM = Õ
(
d2δ−2

)
space complexity

for parallalizable L2([0, tN ]) δ‐accurate score function evaluations.
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Main Results
PF‐ODE Implementation

PF‐ODE with predictor‐corrector [CCL+24] further improves space complexity:

Theorem (Parallel Acceleration for PF‐ODE Implementation)

Under assumptions aforementioned, given proper parameter selections, we have
TV(pη, q̂tN )2 ≲ de−T + dϵ2T 2 + (T 2 +N2)δ2∞ + dN2e−K ≲ δ2,

with a total of
(K +K†N†)N = Õ

(
log2(dδ−2)

)
approximate time complexity

d(M ∨M†) = Θ̃
(
d3/2δ−1

)
space complexity

for parallalizable L∞([0, tN ]) δ‐accurate score function evaluations.

Remark

E [f(xt)− f(x0)]
2 ≲ E

[∫
f ′(xt)bt + f ′′(xt)σdt

]2
+ E

[∫
f ′(xt)

√
2σdwt

]2
∼ O(t2) + σO(t),
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Main Results
Proof Sketch

Theorem (Generalized Girsanov’s Theorem)
Let α(t, ω) ∈ Vm, Σ(t, ω) ∈ Vm×n, and (wt(ω))t≥0 be a Wiener process on
(Ω,F , q). For t ∈ [0, T ], suppose zt(ω) satisfies

dzt(ω) = α(t, ω)dt+Σ(t, ω)dwt(ω),

where Σ(t, ω)δ(t, ω) = α(t, ω)− β(t, ω), then there exists p on (Ω,F) s.t.

1 p≪ q with the Radon‐Nikodym derivative
dp
dq (ω) =MT (ω);

2 w̃t(ω) = wt(ω) +
∫ t

0
δ(s, ω)ds is a Wiener process on (Ω,F , p);

3 Any continuous path generated by the process zt satisfies the following SDE
under p:

dz̃t(ω) = β(t, ω)dt+Σ(t, ω)dw̃t(ω).
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Main Results
Proof Sketch

In n‐th block, let q|Ftn
be the measure shared by wt(ω) in the Picard iteration

1 Define dw̃tn+τ (ω) = dwtn+τ (ω) + δtn(τ, ω)dτ , where

δtn(τ, ω) := sθtn+gn(τ)
(ŷ

(K−1)
tn,gn(τ)

(ω))−∇ log ⃗ptn+τ (ŷ
(K)
tn+τ (ω));

2 Invoke Girsanov’s theorem

log
d ⃗p|Ftn

dq|Ftn

(ω) = −
∫ hn

0

δtn(τ, ω)
⊤dwtn+τ (ω)−

1

2

∫ hn

0

∥δtn(τ, ω)∥2dτ ;

3 Conclude that (w̃tn+τ )τ≥0 is a Wiener process under ⃗p|Ftn
and thus:

dŷ(K)
tn,τ (ω) =

[
1

2
ŷ
(K)
tn,τ (ω) +∇ log ⃗ptn+τ

(
ŷ
(K)
tn,τ (ω)

)]
dτ + dw̃tn+τ (ω),

i.e. the true backward SDE with the true score function for τ ∈ [tn, tn+1].
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Conclusion

Empirical Results
Picard iteration with adaptive window size [SBE+24]
Triangular Anderson acceleration [TTL+24]

Takeaways
Parallelized inference algorithm for both SDE and PF‐ODE
implementations

Convergence analysis that achieves the first poly‐logarithmic error bound
for diffusion models with generalized Girsanov’s theorem
Improved space complexity for PF‐ODE implementation with
predictor‐corrector from Õ(d2) to Θ̃(d3/2)
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Thank you for your attention!
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