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Section 1:

Introduction




Continuous Diffusion Models

Introduction

(a) DALLE 3 (b) Stable Diffusion (c) Al4Science

Figure: Diffusion and flow-based generative models have exerted huge impacts on
scientific research in many fields.
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Problem Setting
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Introduction

Problem Setting

> Task: Sample from data distribution pgy accurately and efficiently
> Forward SDE:

dxs = Bs(xs)ds + o,dws, with xy ~ po

> Backward SDE:

5.5, + 0,0,
+ L ——"L Vlogp,(&:)

dz, = l—ﬁt(it) dt + bdw,

with py = pr ~ N(0,I) and pr = po
> Score Function: s?(x;) ~ Vlogp;(z;) by optimizing

L(0) = /OT ViEa,~p, [HVIOgPt(%) - Sf(ift)}ﬂ dt

zing Diffusion — H. Chen, Y. Ren, L. Ying, G. Rotskoff

> Implementations: SDE (v, = o), Probability Flow ODE (PF-ODE, v, = 0)5/21



Introduction

Error Analysis
1
Take Bs(xs) = —5%s and oy = I:
> Forward SDE: dz, = —3x,ds + dw, with @y ~ po
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Introduction

Error Analysis
Take Bs(xs) = —%ws and oy = I:
> Forward SDE: dz, = —3x,ds + dw, with @y ~ po
> Backward SDE: d; = [%@ + 12V log @(at«t)} dt + vdwy, with
Po =pr =~ N(0,I) and pr = po
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Introduction

Error Analysis
1
Take Bs(xs) = —5%s and oy = I:
> Forward SDE: d@, = —3x,ds + dw, with @y ~ po

> Backward SDE: d, = [%:Et + 1+;2v1ogpt(5;t)} dt + vdwy, with

Po =pr =~ N(0,I)and py = po

Theorem (Error Analysis of Continuous Diffusion Models [BDBDD23

Suppose to =0 < --- <ty =T — 6 satisfies tx11 — tr, < (T — tg+1) and

2
<e.

T = O(log(de™ 1)), k = O(d"telog™ (de™t)), N = O(de tlog?(de™ 1)),

> (k41 — 5)Bay i, [Hwogﬁsk (Bo0) = 55 (@)
k=0

Then with

—

we have

Dxr,(ps|Giy) Sde™ + € +drT S e N
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Error Analysis

Theorem (Error Analysis of Continuous Diffusion Models [BDBDD23
With

T = O(log(de™?)), k = O(d"telog ™ (de™ 1)), N = O(de ' log?(de™ 1)),

we have
Dxr,(ps |Gty ) S de™ T + e+ drT <e.
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Theorem (Error Analysis of Continuous Diffusion Models [BDBDD23
With

T = O(log(de™?)), k = O(d"telog ™ (de™ 1)), N = O(de ' log?(de™ 1)),

we have
Dxr,(ps |Gty ) S de™ T + e+ drT <e.

> Truncation Error: Error caused by approximating pr by po, of the order
O(dexp(=T));
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Theorem (Error Analysis of Continuous Diffusion Models [BDBDD23
With

T = O(log(de™?)), k = O(d"telog ™ (de™ 1)), N = O(de ' log?(de™ 1)),

we have
Dxr,(ps |Gty ) S de™ T + e+ drT <e.

> Truncation Error: Error caused by approximating pr by po, of the order
O(dexp(-T));

> Approximation Error: Error caused by approximating V log p;(x;) by NN
39 (x;), assumed to be of O(e);
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Theorem (Error Analysis of Continuous Diffusion Models [BDBDD23
With

T = O(log(de™?)), k = O(d"telog ™ (de™ 1)), N = O(de ' log?(de™ 1)),

we have
Dxr,(ps |Gty ) S de™ T + e+ drT <e.

> Truncation Error: Error caused by approximating pr by po, of the order
O(dexp(-T));

> Approximation Error: Error caused by approximating V log p;(x;) by NN

8 (x;), assumed to be of O(e);
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> Discretization Error: Error caused by numerically solving the backward
SDE, e.g. exponential integrator [ZC22].
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Introduction

Inference Cost

Inference Cost

» The evaluation of the score function s? is expensive

> The inference process of continuous diffusion models requires O(d) times
of score function evaluations

Possible Solutions

> DDIM [SME20]
Higher-order schemes [DVK22, KAAL22, LHET24]
Operator learning [ZNV+23]
Knowledge distillation [LL21, MRG123]
Consistency model [SDCS23, SD23, LS24]
Parallel sampling [SBET24, TTLt24]

v ¥V VvV v v
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Picard Iteration
Forke[0: K —1],
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Algorithm

Parallel Sampling

Picard Iteration
Forke[0: K —1],
> Solve ODE dxy = fi(x)dt in parallel

mgo) = xg, and a:(kH) =x —|—/ Is( m(k)

> Simulate Langevin dynamics dzy = —VV (z)dt + dw, in parallel [ACV24]

(0) = x, and :c(kH) =xg / VV(x ds + wy
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Algorithm

Parallel Sampling

Picard Iteration
Forke[0: K —1],
> Solve ODE dxy = fi(x)dt in parallel

mgo) = xg, and a:(kH) =x —|—/ Is( m(k)

> Simulate Langevin dynamics dzy = —VV (z)dt + dw, in parallel [ACV24]

S
- 2\ =y, and "V = x, / vV (zM)ds + w,
|
% > Sample from diffusion models in parallel (This work)
: 1
e ~(k+1 ~(k+1)
d¥i, . ° = )~ 2y§n, +s t +gn(7) (yt(n )gn(T)):| dr + dwy, 4+
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Algorithm

Parallel Sampling

Outer Iterations n: N = O(logd) blocks

qo ~ N(0,1,) >Gin ~ Pdata
ho h1 hn—1 hy-1 7
: ‘ % % % — ]
o) — —
— M, = O(d) or O(v/d) parallalizable steps—
qt, > (tqn
k=0 | €n,0 ) €n,1 ) €n,M—1
Inner R S S . \
Iterations k: o \ Y ) )
K = O(logd)
depth :
= K k F %

= ’H/A,—/‘
O(d=") or O(d=1/?)
Figure: Illustration of PIADM-SDE/ODE.
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Main Results

Assumptions

> Regularity of data distribution: py has finite second moment and is
normalized, i.e., covp, (zo) = Iy
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> Regularity of data distribution: py has finite second moment and is
normalized, i.e., covp, (zo) = Iy

> Bounded learned score: The learned score s has bounded C! norm with
Lipschitz const L.
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Main Results

Assumptions

> Regularity of data distribution: py has finite second moment and is
normalized, i.e., covp, (zo) = Iy

> Bounded learned score: The learned score s has bounded C! norm with
Lipschitz const L.

» ¢-accurate score estimation:
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Main Results

Assumptions

> Regularity of data distribution: py has finite second moment and is
normalized, i.e., covp, (zo) = Iy

> Bounded learned score: The learned score s has bounded C! norm with
Lipschitz const L.

> §-accurate score estimation:
SDE The learned score s! is L?([0,tx]) d-accurate:

n=0 m=0

N—-1M,—1
0 o . o 2 2
Ep E E €n,m ‘ Stntrnm (Etntrnm) = VI1og P, 47y (&t 470 ) ‘ <4
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normalized, i.e., covp, (zo) = Iy

> Bounded learned score: The learned score s has bounded C! norm with
Lipschitz const L.

> §-accurate score estimation:
SDE The learned score s! is L?([0,tx]) d-accurate:

n=0 m=0

N—-1M,—1
0 o . o 2 2
Ep E E €n,m ‘ Stntrnm (Etntrnm) = VI1og P, 47y (&t 470 ) ‘ <4

PF-ODE The learned score s? is L>([0,tn]) d-accurate:

0 o e .
Eﬁtn-f—rn,m |:’ stn+7'n,7n (mtn“‘fnxm) -V logptn-ﬁ»Tn,m (mtn"ﬂ'n,m)
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Main Results

Assumptions

> Regularity of data distribution: py has finite second moment and is
normalized, i.e., covp, (zo) = Iy

> Bounded learned score: The learned score s has bounded C! norm with
Lipschitz const L.

> ¢-accurate score estimation:
SDE The learned score s! is L?([0,tx]) d-accurate:

—1M,—-1 2
5 € s? (@ ) — Vliogp (@ ) < 62
Ep nm (| Sty 41 m \Ltn+7n,m &Pt 471, m \Ltn+7n,m = 02

n=0 m=0

PF-ODE The learned score s? is L>([0,tn]) d-accurate:

0 o e .
Eﬁtn-f—rn,m |:’ stn+7'n,7n (mtn“‘fnxm) -V logptn-ﬁ»Tn,m (mtn"ﬂ'n,m)

> Bounded true score (PF-ODE): The true score V log p; has bounded C*

norm with Lipschitz const L,,. 13/21
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Main Results

SDE Implementation

Theorem (Parallel Acceleration for SDE Implementation)

Under assumptions aforementioned, given
T = O(log(d6~?)), h=0O(1), N=0O (log(d6_2)) ,
e=0 (d_162 log’l(dé‘Q)) , M=0 (d5_2 log(d(i_Q)) , K= 5(log(d6‘2)),
we have the following error bound
Dxr(pyllGin) S de™ + deT + 63 + dTe ™ < 62,
with a total of
>KN=0 (log®(d6=2)) approximate time complexity

>dM =0 (d26—2) space complexity
for parallalizable L*([0, tx]) d-accurate score function evaluations.
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Main Results

PF-ODE Implementation
PF-ODE with predictor-corrector [CCLT24] further improves space complexity:

Theorem (Parallel Acceleration for PF-ODE Implementation)

Under assumptions aforementioned, given proper parameter selections, we have
TV(py, Gin)> S de™ T +de*T? + (T? + N?)62, + dN?e 5 < 6%,
with a total of
> (K + KTNT)N = O (log?(d6~2)) approximate time complexity
> d(M v M"Y = 0 (d*?5~1) space complexity
for parallalizable L> ([0, txy]) d-accurate score function evaluations.
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Main Results

Proof Sketch

Theorem (Generalized Girsanov’s Theorem)

Let at,w) € V™, B(t,w) € V™", and (w¢(w))i>0 be a Wiener process on
(Q, F,q). Fort € [0,T], suppose z:(w) satisfies

dzi(w) = a(t, w)dt + 3 (¢, w)dw; (w),
where X (t,w)d(t,w) = a(t,w) — B(t,w), then there exists p on (2, F) s.t.
p < g with the Radon-Nikodym derivative ?(w) = Mrp(w);
q

wi(w) ) + [y 8(s,w)ds is a Wiener process on (€, F, p);

Any contmuous path generated by the process z; satisfies the following SDE
under p:
dz;(w) = B(t,w)dt + (¢, w)dw; (w).
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Main Results

Proof Sketch
In n-th block, let ¢| 7, be the measure shared by w;(w) in the Picard iteration
Define dwy, 4, (w) = dws, 4 (w) + 6, (7,w)dr, where

~(K—-1 . ~(K
81, (rw) =80 oy @0 (@) = Vogh,, o (Tl (w));
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Proof Sketch
In n-th block, let ¢| 7, be the measure shared by w;(w) in the Picard iteration
Define dwy, 4, (w) = dws, 4 (w) + 6, (7,w)dr, where

~(K—-1 . ~(K
81, (rw) =80 oy @0 (@) = Vogh,, o (Tl (w));

Invoke Girsanov’s theorem

1

A hn
@ == [ b () dwi ) = 5 [ () P
0 O

d§| Fi n

log
dqlz,,
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Main Results

Proof Sketch
In n-th block, let ¢| 7, be the measure shared by w;(w) in the Picard iteration
Define dwy, 4, (w) = dws, 4 (w) + 6, (7,w)dr, where

~(K—-1 . ~(K
81, (rw) =80 oy @0 (@) = Vogh,, o (Tl (w));

Invoke Girsanov’s theorem

1

A hn
@ == [ b () dwi ) = 5 [ () P
0 0

d§| Fi n

log
dqlz,,

Conclude that (w;, 4+ )->0 IS @ Wiener process under p|z, and thus:

~(K)

a5 w) = 530 N | a7+ a0,

Lo\ 2ytn,7-(w) +VI0g5tn+T( t

i.e. the true backward SDE with the true score function for 7 € [t,,, tnt1].
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Conclusion

Empirical Results

> Picard iteration with adaptive window size [SBE*24]
> Triangular Anderson acceleration [TTL*T24]

Takeaways

> Parallelized inference algorithm for both SDE and PF-ODE
implementations
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Conclusion

Empirical Results
> Picard iteration with adaptive window size [SBE*24]
> Triangular Anderson acceleration [TTL*T24]

Takeaways
> Parallelized inference algorithm for both SDE and PF-ODE
implementations

> Convergence analysis that achieves the first poly-logarithmic error bound
for diffusion models with generalized Girsanov’s theorem
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Conclusion

Empirical Results
> Picard iteration with adaptive window size [SBE*24]
> Triangular Anderson acceleration [TTL*T24]

Takeaways
> Parallelized inference algorithm for both SDE and PF-ODE
implementations
> Convergence analysis that achieves the first poly-logarithmic error bound
for diffusion models with generalized Girsanov’s theorem
> Improved space complexity for PF-ODE implementation with
predictor-corrector from O(d?) to ©(d*/?)
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