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Newton Method for Functions

To approximate the root of f (x) = 0, the Newton method uses the
following iteration:

xn+1 = xn −
f (xn)

f ′ (xn)
⇐⇒ f ′ (xn) xn+1 = f ′ (xn) xn − f (xn) .

Figure: Newton method
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Newton Method for Operators

For the Newton method applied to an operator, if we aim to find the
solution of F(u) = 0, the iteration can be written as:

F ′ (un) un+1 = F ′ (un) un −F (un) ⇐⇒ F ′ (un) δu = −F (un) ,

where δu = un+1 − un.
In this context, F ′(u)v is the (Fréchet) derivative of the operator, which is
a linear operator with respect to v , defined as follows: To find F ′(u) in X ,
for any v ∈ X ,

lim
|v |→0

|F(u + v)−F(u)−F ′(u)v |
|v |

= 0,

where | · | denotes the norm in X .
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Newton Method for Sovling PDEs

For the Newton method applied to a nonlinear PDE:{
Lu(x) = f (u), x ∈ Ω,

u(x) = 0, x ∈ ∂Ω,

where F(u) = Lu(x)− f (u), each iteration becomes the solution of the
following linear equation with respect to δu:{

(L − f ′(u))δu(x) = −Lu + f (u), x ∈ Ω,

δu(x) = 0, x ∈ ∂Ω.
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Newton Method for Sovling PDEs

For linear equation with respect to δu:{
(L − f ′(u))δu(x) = −Lu + f (u), x ∈ Ω,

δu(x) = 0, x ∈ ∂Ω.

Assumption

(i): For any u ∈ X ⊂ H2(Ω), we have that

f ′(u) ∩ {eigenvalues of L} = ∅.

(ii): There exists a constant F such that ∥f (x)∥W 2,∞(R) ≤ F .

(iii): All coefficients in L are C 1 and ∂Ω ∈ C 2.

When the above assumption holds, the map between u and δu is
well-posed and continuous.
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Operator Learning

Apply operator learning to approximate the map between u and δu
denoted as G.

Figure: Operator learning
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Operator Learning in Sobolev Training2

Theorem

For any p,m ∈ N+ and sufficiently large q, λ ∈ [1, 2], and G : X ⊂ Hs(Td) → Hs(Td)
with s > n + d

2
, where max{∥f ∥W n,∞(Ω), ∥f ∥Hs (Ω)} ≤ M for any f ∈ X and M > 0,

satisfying proper assumption, there exist σ2-NNs T (y ;θ2,k) with depth
3 + log2 d − 1 + log2 n − 1, width 4n − 4 + 6d, and a map D from X → [−M,M]m, as
well as σ1-NNs B(Df ;θk) with C19

mq parameters such that:

sup
f∈X

∥∥∥∥∥G(f )−
p∑

k=1

B(Df ;θk)T (y ;θ2,k)

∥∥∥∥∥
H2(Ω)

≤ C

(
p− n−2

d + p
2
d m− s−s′

d +m
s′
d p

2
d q−λ

m

)
,

where s ′ ∈
(
n + d

2
, s
)
, and C ,C1 are independent of m, p and q. Furthermore, for

λ = 1, B(z ;θk) is a shallow neural network that can achieve this approximation rate. As

λ approaches 2, the ratio between the width and depth of B decreases, implying that

the network structure becomes deeper.

2Yang, Y. (2024). DeepONet for Solving PDEs: Generalization Analysis in Sobolev
Training, arXiv preprint arXiv:2410.04344.
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Training Neural Operator Networks

Mean Square Loss The Mean Square Error loss function is defined as:

ES(θ) :=
1

Mu ·Mx

Mu∑
j=1

Mx∑
k=1

|G (uj) (xk)−O (uj ;θ) (xk)|2

where u1, u2, . . . , uMu ∼ µ are independently and identically distributed (i.i.d) samples in
X , and x1, x2, . . . , xMx are uniformly i.i.d samples in Ω.

Theorem

If the proper assumption holds, then the generalization error is bounded by

sup
θ∈[−B,B]dθ

|E(ES(θ)−ESc(θ))| ⩽ C

[
1√
Mu

(
1 + Cdθ log(CB

√
Mu)

2κ+1/2
)
+

dθ
√
logMx√
Mx

]
,

where ESc(θ) = limMu ,Mx→∞ ES(θ), C , κ are constants independent of B, dθ, Mx , and
Mu. Here, B represents the bound of parameters and dθ is the number of parameters.
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Training Neural Operator Networks

The error supθ∈[−B,B]dθ |E(ES(θ)− ESc(θ))| suggests that the network can perform well

based on the loss function ES(θ). The reasoning is as follows:
Let

θS = arg min
θ∈[−B,B]dθ

ES(θ) and θSc = arg min
θ∈[−B,B]dθ

ESc(θ).

We aim for EESc(θS) to be small, which can be written as:

EESc(θS) ≤ ESc(θSc ) + E(ES(θS)− ESc(θS)) ≤ ESc(θSc ) + sup
θ∈[−B,B]dθ

|E(ES(θ)− ESc(θ))|,

where ESc(θSc ) is small, as demonstrated by Theorem 1 when B is sufficiently large.

Yahong Yang (Penn State) Newton informed neural operator NeurIPS, 2024 9 / 18



Training Neural Operator Networks

Newton Loss Relying solely on the MSE loss function can require a significant amount
of data to achieve the task. However, obtaining enough data can be challenging,
especially when the equation is complex and the dimension of the input space is large.
The Newton loss function is defined as:

EN(θ) :=
1

Nu · Nx

Nu∑
j=1

Nx∑
k=1

∣∣(L − f ′(uj (xk)))O (uj ;θ) (xk)− Luj (xk)− f (uj (xk))
∣∣2

where u1, u2, . . . , uNu ∼ ν are independently and identically distributed (i.i.d) samples in
X , and x1, x2, . . . , xNx are uniformly i.i.d samples in Ω.

Corollary

If the proper assumption holds, then the generalization error is bounded by

sup
θ∈[−B,B]dθ

|E(EN(θ)−ENc(θ))| ⩽ C

[
1√
Nu

(
1 + Cdθ log(CB

√
Nu)

2κ+1/2
)
+

dθ
√
logNx√
Nx

]
,

where ENc(θ) = limNu ,Nx→∞ ES(θ) and C , κ are constants independent of B, dθ, Nx , and
Nu. Here, B represents the bound of parameters and dθ is the number of parameters.
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Newton informed neural operator

In this paper, we integrate Newton information into the loss function,
defining it as follows:

E(θ) := λES(θ) + EN(θ),

where EN(θ) represents the cost associated with the unsupervised learning
data. If we lack sufficient data for ES(θ), we can adjust the parameters by
selecting a small λ and increasing Nx and Nu. This strategy enables
effective learning even when data for ES(θ) is limited. We refer to this
neural operator, which incorporates Newton information, as the Newton
Informed Neural Operator.
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Better Generalization

We consider 2D convex problem L(u)− f (u) = 0, where L(u) := −∆u,
f (u) : −u2 + sin 5π(x + y) and u = 0 on ∂Ω.

(a) The training and testing
errors just using MSE.

(b) Comparison of models
trained using MSE and both
loss functions, the latter em-
ploying the defined loss func-
tion with λ = 0.01.

Figure: Various conditions.
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Fast speed

We consider a 2D Non-convex problem,{
−∆u(x , y)− u2(x , y) = −s sin(πx) sin(πy) in Ω,

u(x , y) = 0, in ∂Ω

where Ω = (0, 1)× (0, 1).

Figure: Solutions
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Fast speed

We consider a 2D Non-convex problem,{
−∆u(x , y)− u2(x , y) = −s sin(πx) sin(πy) in Ω,

u(x , y) = 0, in ∂Ω

where Ω = (0, 1)× (0, 1).

Parameter Newton’s Method NINO

Number of Streams 10 -
Data Type float32 float32
Execution Time for 500 linear Newton systems (s) 31.52 1.1E-4
Execution Time for 5000 linear Newton systems (s) 321.15 1.4E-4

Table: Benchmarking the efficiency of Newton Informed Neural Operator
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Find new solutions

The Gray-Scott model 3 describes the reaction and diffusion of two chemical
species, A and S , governed by the following equations:

∂A

∂t
= DA∆A− SA2 + (µ+ ρ)A,

∂S

∂t
= DS∆S + SA2 − ρ(1− S),

where DA and DS are the diffusion coefficients, and µ and ρ are rate constants.

Figure: Examples of steady states of the Gray Scott model

Figure: Two steady states do not exist in supervised data set.

3J. Pearson. Complex patterns in a simple system. Science, 261(5118):189–192, 1993
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Find new solutions

(a) Examples demonstrating how the neural operator maps the initial state to the steady
state in a iterative manner

In Fig. (16), we use a ring-like pattern as the initial state to test our learned

neural operator. This particular pattern does not appear in the supervised training

dataset and lacks corresponding ground truth data. Despite this, our neural

operator, trained using Newton’s loss, is able to approximate the mapping of the

initial solution to its correct steady state effectively.
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Conclusion

In conclusion, we summarize the key contributions of this work as follows:

1 Development of the Newton informed neural operator: We
introduced a novel approach by combining neural operator learning
with classical Newton methods to address the challenge of solving
nonlinear PDEs with multiple solutions in a well-posed manner.

2 Theoretical and practical advantages: Our theoretical analysis
demonstrated that the proposed method can efficiently learn the
Newton operator, reduce the dependency on supervised data, and
discover solutions not present in the training data due to the
incorporation of the Newton loss in the loss function.

3 Experimental validation: The experiments confirmed our theoretical
results, showing that the Newton informed neural operator requires
fewer supervised data, identifies previously unseen solutions, and
achieves these results with reduced computational time compared to
classical Newton methods.
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Thank you for your listening!
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