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Mixed-Integer Linear Programs and Graph Representation

@ Mixed-Integer Linear Program (MILP): optimizing linear objective
function subject to linear and integer constraints.

@ The information in a MILP problem can be encoded into a weighted
bipartite graph with vertex features (Gasse et al., 2019):
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Strong Branching

e Strong branching score SB(G) € R".

o A widely used heuristic that effectively reduces the size of the
branch-and-bound (BnB) search space.
o Computationally expensive (solving O(n) linear programs (LPs)).

® x'p(G) € R" is the optimal solution with the smallest £-norm to the
LP relaxation.

e If x; is not an integer variable, then SB(G); = 0.

o If x; is an integer variable, then

SB(G); = (fp(G,J, lj, ;) — fp(G)) - (Ap(G, J, /:'7 uj) — fi’p(G)),

where d; = [x'p(G);], /; [x'p(G)j], and £ is the optimal
objective value of the LP relaxation.
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Message-Passing Graph Neural Networks

@ Message-passing graph neural networks (MP-GNNs)

@ Message-passing layers

fr (). g-d(5 Seh)

For any €,0 > 0 and any MILP data distribution PP supported on
“MP-tractable” instances, there exists an MP-GNN F such that

PIF(G) —SB(G)|| <d] >1—e.

MP-tractability: edges with the same pair of vertex features have the
same weight.

@ A generic MILP instance is MP-tractable.
@ For non-MP-tractable MILPs, MP-GNNs may fail to represent SB.

Ziang Chen (ziang@mit.edu) GNN's for Strong Branching NeurlPS 2024



A Counter-Example for MP-GNNs

min  x1 + Xo + X3 + Xg + x5 + Xg + x7 + Xg,
st. x1+x>1 xo+x3>1, x3+x4>1,
X+x521 x5+x 21, x6+x7>1,
x7+xg > 1, xg+x1 > 1,
0<x <1, x5€Z, 1<j<8

min  x; + X2 + x3 + X3 + x5 + Xg + X7 + Xg,
st. xi+x>21, x+x3>1, x3+x >1,

x7+xg > 1, xg+x7>1,
0<x <1, x€Z 1<j<8
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Second-Order Folklore Graph Neural Networks

@ Second-Order Folklore Graph Neural Networks (2-FGNNs)

@ Computation via edge features.

@ Internal layers:
° s _p( I=1 zjlewf’(tjlul, i )) forallie V,j e W, and
° tJllJz =4q (,/1_]217ZI€Vg( Z,2 1’ Sijy ) for all ji,jo € W.

e Final layer:

° Y= r(szVSI!JT’ZﬁEW tfi;)
For any €, > 0 and any MILP data distribution IP, there exists an
2-FGNN F such that

P[IF(G) ~ SB(G)| < 8] > 1 —e.
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Numerical Results
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The End

Thanks for your listening!
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