Analysing Multi-Task Regression via Random Matrix Theory

Romain ILBERT, Malik Tiomoko, Cosme Louart, Vasilii Feofanoy,
Themis Palpanas, levgen Redko

9,. NEURAL INFORMATION
%%j-,, PROCESSING SYSTEMS
T

o 0®




Multi-Task Regression : Definition

- Multi-task learning: inspired by human intelligence, enabling knowledge transfer
- It leverages shared information across tasks to boost overall performance.
- Key benefits: enhanced accuracy and structured representations from diverse and multimodal data.

- Successfully applied in fields like computer vision, NLP, and biology.

Common Part Specific Parts

A
v
A
N

Task 1

NoZAReT/A

ws‘(&%\'{?
X }‘Q‘Q’XOX‘Q";I‘
RN LN LSS

Task 2




Multi-Task Regression : Problem Setup

We consider T tasks with the input space SZ'(Z) C [Rdand the output space ?(f) C R4

We consider n, samples
We consider the input matrix X = [x(lt), x,(ft)] e R, x" e I
We consider the the output matrix Y® = [y(l"‘), y,(ft)] e R y" e ¢

Regression : To learn W, € R%% such that :
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with € € R4, Gi([) ~N(O0,Zy) ,Zy € R9%4



Multi-Task Regression : Regularization objective

- We propose to decompose the weights to learn into W, = W,+V,
- W, € R™ is a common matrix that captures information across all the T tasks

-V, e R4 s a task-specific matrix which captures deviations specific to task t

The following minimization problem governed by a parameter A that controls the balance between the
common and specific components of W = [W,, ... WT] € RT#q
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with y = [y, ..., 771



Multi-Task Regression : W decomposition




Main contributions and results

- Random Matrix Theory: Exact computation of train and test risks and decomposition of test risk into
signal (effectiveness) and noise (negative transfer) terms.

« Test Risk Optimization: We show how the signal and noise terms compete with each other depending
on A for which we obtain an optimal value optimizing the test risk.

- We derived a closed-form solution for A* based on data covariances, signal-generating hyperplanes,
noise levels, and dataset size.

- We demonstrate the patterns observed in real-world regression problems with linear models also
apply to neural networks in the context of multivariate time series forecasting (MTSF).

« By obtaining 1*, we make a simple univariate linear model outperform the current sota models.



Assumptions

(Assumption 1: Concentrated Random Vector
We assume that there exists two constants C, ¢ > 0 (independent of dimension d) such that, for any task t, for any 1-Lipschitz
function f, any feature vector x® verifies :
2
Vi > 0:P(| D) —E[fxD)]| >1) < Ce ) E[xP]=0 and Cov[x?] =20
.

Assumption 2: High-Dimensional Asymptotics
T

n
Asd — oo,n, = O(d) and T = O(1) . More specifically, we assume that ] 2% ¢y < cowithn = Z n,.
t=1

.




Main Theoretical Results

Theorem 1 (Asymptotic train and test risk). Assuming that the training data vectors xz(-t) and the test
data vectors x!) are concentrated random vectors, and given the growth rate assumption (Assumption
2), it follows that:

tr (WTA=3Q,(A)A:W) iy G
R?:st = ( Td ) + ( TT:iQ2) + tr (En) . (ATR)

signal term noise terms

~

In addition, the asymptotic risk on the training data is given by

tr (WTA—l/ZéA—WW) tr (WTA“” 2Q, (Ira) A=Y/ 2W) tr (£,Qz)
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where (3, éz(ITd) and Q- are respectively deterministic equivalents for Q, Q2 and Q2.



Main Theoretical Results

Contribution to the Test Error

Rioee = Diz (W13 + [W2|13) + Crrr Wi Wa + NyrtrS,

where the diagonal term (independent learning) D, the cross term (multi-task learning) C 7y,
and the noise term (negative transfer) N 7 have closed-form expressions depending on y and A:
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Figure 1: Test loss contributions D1, Cyrrr, N y7 across three sample size regimes. Test risk
exhibits decreasing, increasing, or convex shapes based on the regime. Optimal values of A from
theory are marked.




Comparison between practice and theory
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Figure 2: Empirical and theoretical train and test MSE as functions of the parameter A for different
values of a. The smooth curves represent the theoretical predictions, while the corresponding curves
with the same color show the empirical results, highlighting that the empirical observations indeed
match the theoretical predictions.
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Figure 3: Theoretical vs Empirical MSE as function of regularization parameter A. Close fit between
the theoretical and the empirical predictions which underscores the robustness of the theory in light
of varying assumptions as well as the accuracy of the suggested estimates. We consider the first two
channels as the the two tasks and d = 144. 95 samples are used for the training and 42 samples are
used for the test.



Application to Multivariate Time Series Forecasting

vy = 0.0 —y = 0.1
Yy = 0.001 ===y =0.15
=y = 0.01 == PatchTST Baseline
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Figure 4: Results of our optimization method on different datasets and horizons averaged across 3
1 different seeds for each gamma and lambda values for the PatchTST baseline



Application to Multivariate Time Series Forecasting

Dataset  H with MTL regularization without MTL regularization
PatchTST DLinearU Transformer PatchTST DLinearU DLinearM Transformer SAMformer' iTransformer

96 0.385 0.367* 0.368 0.387 0.397 0.386 0.370 0.381 0.386

= 192 0.422 0.405* 0.407* 0.424 0.422 0.437 0.411 0.409 0.441
E 336 0.433* 0.431 0.433 0.442 0.431 0.481 0.437 0.423 0.487
720 0.430* 0.454 0.455* 0.451 0.428 0.519 0.470 0.427 0.503

96 0.291 0.267* 0.270 0.295 0.294 0.333 0.273 0.295 0.297

E 192 0.346* 0.331* 0.337 0.351 0.361 0.477 0.339 0.340 0.380
E 336 0.332* 0.367 0.366* 0.342 0.361 0.594 0.369 0.350 0.428
720 0.384* 0.412 0.405* 0.393 0.395 0.831 0.428 0.391 0.427

- 96 0.148 0.149* 0.154* 0.149 0.196 0.196 0.170 0.197 0.174
f::j 192 0.190 0.206* 0.198* 0.193 0.243 0.237 0.214 0.235 0.221
§ 336 0.242* 0.249* 0.258 0.246 0.283 0.283 0.260 0.276 0.278
720 0.316* 0.326* 0.331 0.322 0.339 0.345 0.326 0.334 0.358

- Our regularization approach allows for the efficient use of univariate models in a multivariate context.

- We show that our method improves performance over PatchTST and DLinear compared to independent application
to each channel.

- It enables univariate models to reach SOTA performance similar to multivariate models like SAMformer and

iTransformer.
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Conclusions and Future Works

« Explored linear multi-task learning with a closed-form solution for an optimization problem leveraging

information across multiple tasks.
« Applied Random Matrix Theory to derive asymptotic training and testing risks.
» Provided insights into high-dimensional multi-task learning regression.

« Successfully applied theoretical analysis to multi-task regression and multivariate forecasting on synthetic

and real-world datasets.

- Laid a solid foundation for future research using random matrix theory with more complex models,

including deep neural networks, within the multi-task learning framework.
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