Generalized Linear Bandits with Limited Adaptivity

B® Microsoft

Generalized Linear Bandits
Generalized Linear Models: Random variable r

has PDF with parameter z:
P,[r] = exp(rz — b(z) + c(r))

b(z) is convex and u(z) = b(z) = E,[r].
e \We consider GLMs with r € [0, R] a.s.

At every round t € {1, ..., T}:

1. A context Xy = {x1¢,.... Xk} C R%is pre-
sented

2. Learner plays arm x; € X according to some
policy ;

3. Learner observes reward r; sampled from a
GLM with parameter x/6*

4. (Optional) Learner updates policy 7 to 71
using observation and history

Limited Adaptivity

Model M1: Learner can update policy only M
(given) number of times. Learner must declare be-
fore the start of bandit instance at which rounds it
will update its policy.

Model M2: Learner can update the policy for
polylog(T) times. Learner can decide adaptively
in which rounds 1t will update the policy.

B-GLinUCB for M1
e Stochastic Contexts 1.e., Xy ~ D

e Performance: Regret over T rounds given by-

.
Ry = E[Z ()r;r;a)é w(xT6*) — ,U'(XtTG*))}

e Non-linearity measures: For arm set X, let x* =

argmax w(x76*). Define the quantities:

xeX
1
K — Max Max -
Xesupp(D) xeX ,U,(XTQ*)
1
— = max a(x7Te"
K* X esupp(D) ,U:( )
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= = Bap [A(x7707))

Optimal Design Policies

G-Optimal Design

Let X C R? and A(X) be set of probability dis-
tributions supported on X. For A € A(X), let
UX) = E [xxT]. Define:

X~

T = argmin max ||x||%y-1
AEA(X) XEX v

Tp = argmax log det (U(X))
AEA(X)

Kiefer-Wolfowitz Theorem: 7w = 7p and

Cumulative Regret vs # of Rounds

Cumulative Regret vs # of Rounds

Distributional Optimal Design [Ruan et al.
(2021)]

Let M = {(p;,M;)}_, where, p; > 0 and
>..pi=1. Forany i € [n], let mm, € A(X)
defined as:
M, (X) = HXH%\;IX’ VxeX
| Zyex\lyﬂfw"‘,

Distributional Optimal Design 7 for col-
lection M Is given as:

1 ~ pi
m(x) = §7TG(X) + ; EWM/(X), Vx e X
Lemma:; Let X7y, ..., X 2D and let M be
constructed using Algorithm 2 of [1]. Further,

define W = E | E [xxT | X]|. Then, with
X~D X~

high probability,

E | max||x|lw-:] < O(y/dlogd)

X~D "~ xeX

Algorithm
Batch lengths 74, k € [M] are calculated as:
(\/E €35 2y )2/3
T1 .= QA :
S
To =, Ty \= 0\/Tk_1, for k € [3, M]

where v .= 30RS+/dlogT (||6*]] < S) and a =
1
T20-22M f M <loglogT and o = 2+ T else.

B-GL1nUCB

1. 7, rounds, play arms using T and observe rewards.

2. Obtain 6, via MLE.

3. For batches kK =2, ..., M do:

4. For 7, rounds do:

5. Recelve arm set X;.

0. Use previous estimates of 6* to eliminate
arms.

7. Scale the reduced arm set with a non-
linearity factor.

3. Play an arm based on Distributional
Optimal Design policy on the scaled arm set.

9. Estimate (via MLE) 6% .

10. Construct a new Distributional Optimal

Design policy.

Theorem: Regret of B-GLinUCB Ry < (R; +
R>)loglog T, where

d 1 1
R, =0 (RSd (\/; A ”/{*) T20-27") |og T) and

1
R, =0 (/41/3d2e25(/?5 log T)2/3T3(121M)> .

Corollary: When M >
achieves a regret bound of

Ry < 5( (@A \/,9 dRSVT

_|_d2€25(52R2K’T)1/3)

loglog ', B-GLinUCB
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RS-GLinUCB for M2

e Adversarial Contexts: X; can be any subset of R?

e Performance: Regret over T rounds given by-
T

Rr =) (maxp(xT0%) — u(x]6"))
t=1 '

e Non-linearity measure: For adversarial context

1
max

K .= :
xeul_ X, ,U:(XTQ*)

Algorithm

Key Highlights

e Optimal Regret: Resolves conjecture in GLM

Bandit by removing k from v/T-term

e Computationally Efficient: Update time Is per
round amortized O(poly(d)logT)

e S-free Regret: Resolves conjecture of polyno-

mial dependence on S in regret’s leading term

Main Idea: Context-dependent switching criterion

In addition to determinant-doubling trick

RS5-GL1nUCB

1. Initialize: V = H = A, 7, = 0, 7 = 1,
X = dlog(T/6)/R? and v = 25RS [dlog (§).
2.Forroundst=1,..., T do:
3.  Observe arm set X;.
4. |If mz;g<||x||%,_1 > 1/(v*kR?) [Criterion I]
XE At
5. Select x; = argmax ||x||y-1 and observe r;.
XGXt
6. Update 7, + ToU{t}, V < V + x;x] and
H: 1 < H;. R
7. Compute 6, = argmin ) .- £(0, xs, 15) +
f
Jllell3.
8. Else
0. If det(H¢) > 2det(H;) [Criterion II]
10. Set T = t and 6 + arg@min 2116113 +
Zse[t—l]\z'gz(e' Xs) I’S) _
11. 6, < Project(6)
12. Update X} «— &\ {x € X; : UCB,(x) <
maxzex, LCBo(2)}.
13. Select x; = argmax UCB(x,H;,6;) and
xeX;
observe reward r;. ~
14. Update H; 1 < H: + WMX}

Theorem: Given § € (0,1), with probability >
1 — 9, the regret of RS-GLinUCB satisfies

R =0 d

kd’R°S%log” (T /9) )

Lemma: RS-GLinUCB, during its entire execution,
updates its policy at most O(R*S? kd? log*(T /§))

times.

. Probit with T = 20000, (avg of 20 trials)
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