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What is Model Growth?
@

e Leverage trained smaller (base) models to accelerate the training of larger
(target) models.

e Expect a faster speed given the same budget, compared with model trained from
scratch.

Process

| A\

| Train a small model Continual training the large model

Du et al. Jul 2024 3/30
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What is Model Growth?

Many Follow-ups

e stackBert ICML19, bert2bert ACL20, stagedTrain 22, GradMax ICLR22, LiGO
ICLR23, Lemon ICLR24, MSG ICLR24, ...

Impressive performance
¢ And they assert they can speedup the training phase for about 30% to 60%.

v

* These techniques are underexplored in pre-training LLM.

* Considering how expensive LLM pre-training is, if we could successfully adopt model
growth techniques to LLM pre-training, which would be a great contribution to
efficiency and resource-saving.

Du et al. Jul 2024 5/30
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Underexplored in Efficient LLM Pre-Training

¢ Model growth techniques are underexplored in pre-training LLM.

Figure: MSG ICLR24 Figure: LEMON ICLR24

Table 2: Downstream performance of BERT(12, 768) on the GLUE dataset: Large model expanded

gﬁ,‘?d ;:,‘1'] 1]:;:1‘:‘ (';})l_;fn‘_‘z‘)g' 5;%‘}) qu-:;)_zz) xsy(t{ ?,‘;;} 05 383(0?,;,: 00 from BERT(§.§84) achi.eves the best downstream performance. A potential reason for this may be
N2N-sch1-B 14h, 36min 80.5(0.2) 524(15) 9L1(0.4) 84.3(0.9)/88.8(0.6) 88.3(0.1)/88.0(0.1) its longer training duration (165k) compared to the BERT(6,512) (132k).

MSG-schi-B 14h, 32min 8100.2) 58.201.6) 91.00.2)  85.0(0.5)/89.4(0.5) 88.10.1/87.6(0.1)

Method QQP MNLImw/mm)  QNLI____RTE SQuADVI.T Dataset STSB MRPC CoLA SST2 QNLI MNLI MNLlmm  QQP

Full-B 90.6(0.1)/87.30.1)  82.5(0.3/82.9(0.1)  89.90.1) 65.1(0.7) 79.1(0.2)/86.9(0.2) (Metric) (Corr)  (Ace)  (Mee) (Ace) (Ace) (Ace)  (Ace)  (Ace)

N2N-sch1-B | 90.1003)/87.000.1)  81.1(0.2)/82.1(0.1)  89.2(0.1)  66.3(0.5) 79.00.1/86.7(0.0) “Train from scratch 0744 8333 019 8888 8780 8028 8117 8962

MSG-schi-B | 90.0(0.1)/87.000.1) 81.8(03)/824(02) 89.9(0.1) 63.1(1.6) 79.6(0.5/87.2(0.4) LEMON (Ours), from BERT(6,512) 0848 8382 036 9014 8876 8092 8157 8991

LEMON (Ours), from BERT(6,354)  0.866  85.54 038 9094 §933 8181 SL81 _ 90.40

Table 3: Evaluation of Bert-base after fine-tuning on downstream tasks. For metrics, we use Matthews
correlation for CoLA, Pearson/Spearman correlation for STS-B, accuracy/f1 for MRPC, QQP. and
SQuAD, and accuracy for all the other tasks. The numbers are mean (standard deviation) computed
across 3 runs.

Duetal. /30
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Expensive in LLM Pre-Training

* The advance of LLM comes at the expensive cost of energey consumption?3.

90 A NVIDIA GPU Serve mated in 2027

city Consumption E

[ 3
Google’s Electricity Consumption in 2022

Country-wise Electricity Consumption in 2022 (TWh)
"
2

Montenegro  Croatia Ireland  NewZecaland ~ Singapore  Switzerland  Austria Belgium
Country

Figure 1: The electricity consumption comparison between countries and Al Data source: [77].

31,A Survey of Resource-efficient LLM and Multimodal Foundation Models, 2024.
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Investigate Model Growth for LLM Pre-Training

Therefore, in this work ...

@
We aim to investigate model growth for efficient LLM pre-training. J

*In this presentation

e This presentation is basically showing the steps involved in our investigation of
this project.
¢ Particularly, we address Three Obstacles step by step.

Duetal. Jul 2024 8/30
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Three Identified Obstacles and Three Corresponding Questions

* O1: Lack of comprehensive assessment

= Q1: Do Model Growth Methods Work in LLM Pre-Training?
e 02: The untested scalability

= Q2: Are These Methods scalable?

e O3: Lack of empirical guidelines
= Q3: How to use in practice?

Investigate Ol (Lack of comprehensive assessment ) QEEEEEENT
if Ql is true:
Investigate 02 (The untested scalability)
if Q2 is true:
Investigate 03 (Lack of empirical guidelines) GEEEEEEENEEED

UuaphwWN =
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Obstacle One - Lack of Comprehensive Assessment

@
Examine whether model growth techniques actually work in LLM pre-training. ]

Process

@ Category model growth techniques into four atomic growth operators, Gyjrect,
Giearns Gzero and Grandom-

® Then we examine them into depthwise growth and widthwise growth, G' and
G.

Du et al. Jul 2024 9/30
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Four Atomic Growth Operators: G

.
Old parameter ‘lr\lew parameter
rom random Split a+p=1

New parameter New parameter
from the old assigned to zero

You may refer to
animated GIF atomic

growth operators.

Jul 2024 10/30
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Experiment Details

e Codebase: Tiny-llama codebase https://github.com/jzhang38/TinyLlama

e Dataset: Slimpajama-627B

https://huggingface.co/datasets/cerebras/SlimPajama—-627B

Process - Grow from 410M LLM to 1.1B LLM

|Train aLLM(6L;2048H) for 10B tokens |

| Train a LM (241; 1024H) for 10B tokens |

LLM (24L;2048H) = G'(LLM (6L; 2048H))

LLM(24L;2048H) = G7(LLM(24L;1024H))

2

1

Then train LLM (24L; 2048H) for 100B tokens

Then train LLM (24L; 2048H) for 100B tokens

Duetal. Jul 2024 11/30
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Experiment Results

Depth Width Baseline
G;irect GZTerU G;andam GlTearn Gdirect Gzero random Giearn |Scratch Takeawa yS
Lambada (T) - 44.14 46.16 4467 4424 4566 * |In general, G’
ARC-c (1) - 27.38 26.70 26.70 is better than
—
ARC-e (1) - 51.76 52.69 51.17 51.55 49.70 50.37 48.86 G™.
Logiqa (1) 25.96 2503 2611 2657 | 25.96 > Ggi,ect
70.78 69.47  69.74 7013  69.91 | 69.64 emerges as
) the clear
Sciq (1) 77.7 81.4 76.0 76.8 ,
t winner.
Winogrande (T) - 53.35 52.95 53.51
* We denote
Avg. (1) 50.43 4954  50.63 5032 | 50.12 G' as
— direct
Wikitext (|) 17.85 1803 1876 1829 1844 | 17.98
stack- )
2.258 2249 2227 2233 | 2204

-17.9%  -13.8%

< Back to Three Obstacles
-15.4%
Jul 2024 12/30
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Obstacle Two - The Untested Scalability

[}
(o]

©)
Is Gstack SCalable (robust) in efficient LLM pre-training? J

Process

@ Scale to training 3B and 7B LLMs.

|Train aLLM(8L;2560H) for 10B tokens | |Train a LLM(8L;4096H) for 10B tokens |

|

|LLM(32L;2560H) = Gstack(LLM(8L;2560H))| |LLM(32L;4096H) = Gsrack(LIM (8L; 4096H) )
L £

Then train LLM (32L; 2560H) for 300B tokens | | Then train LM (32L; 4096H) for 300B tokens

Duetal. Jul 2024 13/30
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Obstacle Two - The Untested Scalability

Efficient strategies may initially learn faster but ultimately perform similarly or worse
than vanilla training methods when given more training data.

Process

@ Scale to Iar%er tralnl.n§ | Train a LLM (6L; 1024H) for 10B tokens |
tokens. We “overtrain” a

|
410M LLM for 750B tokens
! LLM(24L;1024H) = G LLM(6L; 1024H
which is almost 100 times ( ) = Gtack(LLIM( )

1
larger than Chinchilla scaling )
law recommended (8B). Then train LLM (24L; 1024H) for 750B tokens

v
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with 750B tokens 410M with 750B tokens Figure: Loss Difference
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Estimated Scaling Laws

(<)}

£

Training Loss
w

N

—— scratch(410M)
—— Gstack(410M) -
—— scratch(1.1B) -

—

Gistack(7B)
- Scratch Law
- Stacking Law

Gitack(1.1B) Y scratch(13B)
~—— scratch(3B) ¥ Getack(13B)
Gitack(3B) Y scratch(70B)
scratch(7B) %  Gestack(70B)
\\
S
ek
01 1 10 100 1000

FLOPs (1e+20)

Duetal.

e We plot our four models (410M, 1.1B,
3B, and 7B) on the same figure.

e Then uncover our “scaling law” using
the Ggack Operator: Lg = aC?

Takeaways

® Ggack is scalable in both model scale and
training tokens.

® Ggack Scaling law exhibits improved
efficiency compared to the scaling law
estimated from baseline LLMs.

< Back to Three Obstacles

Jul 2024 18/30
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Obstacle Three - Lack of Empirical Guidelines
©)
How to use Gg,c in practice? J

Process
Determining Growth Timing (d) and Growth Factor (g).
e Growth timing d: the training token d for the small model.

e Growth factor g: the factor by which the model parameters increased after
growth (roughly equivalent to the ratio of increased layers in Gsack)-

_ 9
log10(C)
where Cis the computing budget and N is the target parameter size.

—
Duetal. Jul 2024 19/30
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Figure: IsoFLOP on 410M Figure: IsoFLOP on 1.1B Figure: IsoFLOP on 3B
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Predicting Growth Timing d

,\35 5

e 2 \\\\ * We formalize a set of guidelines for effectively
S \\ . a_ utilizing the Ggiack Operator. For growth timing
25 A g d (tokens):

é 20 '.\ NX"'Q- 3E=E, ¢

@ ° 4

~ o'-. \ 8 16327

>15 » 5 10910(d) = 0.88 log;o(N) + ——— — 5.74 (10)
£ |s ons > 2 5 o) o) log10(C)

F 10 % 8

S 1

g s ¢ where Cis the computing budget and N is the
© model parameters.

0 5 10 15

FLOPs (1e+20)
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Growth Factor g
2.8

3 3.2 3 e For predicting growth
[} o %) o R A
g g8, 3 timing d, please refer to
o 3 o 3 Eq 10.
£ - k= Z
£ £ £7° s& * For predicting growth
" T Tosld T factor g, due to

o
o

computational
constraints, we indicate
that the optimal growth

2.4

~
~

1 4 8 16 32
Growth Factor Growth Factor factor g lies between 2
and 4. )
Figure: IsoFLOP on 410M Figure: IsoFLOP on 1.1B
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Takeaways of Three Obstacles

¢ Q1: Do Model Growth Methods Work in LLM Pre-Training?
= We summarize the existing model growth approaches into four operators and
make a comprehensive evaluation, the depthwise growth G,k beats all other
methods.

® Q2: Are These Methods scalable?
= We scale up G,k by extending the model size and training data scales. We
find that G, Operator has excellent scalability.

* Q3: How to use in practice?
= We systematically analyze the usage of the G, operator, focusing on growth
timing and growth factor. We provide guidelines of equations for effectively
utilizing the G5k Operator.

Duetal. Jul 2024 23/30
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How to stack?

1. Gradual Stacking

Tokens (Billions) Tokens (Billions)
20 40 60 40 60 80

* We compare our 302 20
“one-hop” Gstack and 2ol |\ mion — ariscisoe e ya
gradual stacking Js ‘ ‘ > i
approach (two-step: " 2'7 L) §50 ./ °
train-stack-train-stack). 8 2'6 225 \\ § o« /0).—0
* Guack achieves a 2.4 _§’2'5 ‘ 220 \%: S %8 NG
higher average accuracy 22'4 \i ) § /’ g
and 0.6 better Wikitext ' ERR e
PPL than gradual stacking |~ \Li\.\ » /
when pre-training large 2 i y
models for 100B tokens. | *'¢ 3 & % 5 z ;
FLOPs (1e+20) FLOPs (1e+20)
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How to stack?

2. Interpolation

® Gsiack iNVolves taking the o 2 Tokeﬂ)s (Billis%ns) . 2 Tok4eons (Biléié)ns) 80
entire small model as a e — o .
unit and directly stacking 30 i I ,./'
it, which can retain the e . T e
connections between g2 N S §50 / o >
most layers. 3 220 \:i\ g, ././.

* Interpolation involves § RN g 574
replicating and =24 \ O j;;“ﬁ .
interleaving each layer in o Kmmmmoee Ve
the small model, which 22 \§§'\ "
almost break the B —— 02t ‘

. 0.0 2.5 5.0 7.5 10.0 125 2 4 6 8 10 12 14
connections. ) FLOPs (1e+20) FLOPs (1e+20)
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To measure the degree of adjacent inter-layer connections after stacking, we define
the connection rate R;:

Con,
Cong (1)

where the Con, is number of retained connections, the Con, is number of all layers.
v

RC:

For example, if we had a small model with three layers, denoted as {L4, L», L3}, and
desired a model depth of 6, G5k Would resultin {Ly, Lo, L3, L1, Lo, L3}, where its

R = 80%. The interpolation approach would result in {L¢, Ly, Lp, Lo, L3, L3}, where its
RC = 40%-

N\

Duetal. Jul 2024 26/30
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How to stack?

3. Partial Stacking

* We stack a small model
with 6 o o TOkens (Billions) ,, Tokens (Billons)
Iayers ({L1 ) L27 T LG}) to a 30 =0 — Gual123-456%7) °
24 layers target model. 29 e it . e

—— Getack(1 = 234%7 - 56) —— Gstack(1234 - 56 *10) 'S A//a
. . 2.8 | Gwa12-345+7-6) __e

* Partial stacking has been i 0w 3, 4%32"‘53\2
explored in LLMs like il B g e
LlamaPro?, Solar®. But 2?° M 2 /:%;/f' o

g 9 c = <)
their goal is to stack an £ 2 /‘/ v
2. e
off-the-shelf LLM such as m 2 2 I
Llamaz2. 23 Ot e o e
2.2 L] o te — amazsste
92, “Llama pro: Progressive llama with block 210 2 7 — Gm;m% H; 3
expansion’, 2024. FLOPs (1e+20) FLOPs (1e+20)
b3, “Solar 10.7 b: Scaling large language models
with simple yet effective depth up-scaling”, 2023.
V.

Du etal. Jul 2024 27/30



Motivation Obstacle 1 Obstacle 2 Obstacle 3 Ablations Conclusion References
0000000 0000 000000 00000 ooooe

Eight partial stacking methods can be divided into three groups based on their loss.
® The first group, {123456*4, 12-3456*5-56, 12-345*7-6, 123-456*7}, achieves the best.

® The second group consisting of {1234-56*10, 12-34*10-56, 1-234*7-56}, performs just
fine.

e The third group, {123*7-456}, performs poorly, even worse than the baseline.

Group Method Stacked parts Rc

IELGEWENS
12345674 al 87.0% * we conclude that: all >
First 12-3456*5-56  middle-back  78.3% middle ~ back >>.front.
12-345*%7-6 middle-back  74.0% .
123-456%7 back 74.0% e Meanwhile, when the
1234:56%10 back 60.7% :gargie‘;‘hzi;tﬁgaeﬁﬁ;e
Second | 12-34*10-56 middle 60.7% R,, the better the
1-234*7-56 front-middle  74.0% performance.
Third 123*7-456 front 74.0% ‘

Duetal. Jul 2024 28/30
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Conclusion

e This work empirically explores model growth approaches for efficient LLM
pre-training.

e We first comprehensively evaluate model growth techniques into four atomic
operators and explore depthwise growth Ggi,c« beats all other methods and
baselines in various evaluations.

e We next address concerns about the scalability of G,k by extending the model
and training data scales.

e Furthermore, we systematically analyze the usage of the Gg,c Operator,
focusing on growth timing and growth factor.

Please visit homepage for the paper, codes and ckpts: https://lim-stacking.github.io/ J
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T ornds
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