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Figure 2: Overview of the proposed TPP approach. During training, for each graph task ¢, the
task prototype p’ is generated by applying Laplacian smoothing on the graph G* and added to
P = {p!,...,p"1}. At the same time, the graph prompt ®* and the classification head * for this
task are optimized on G* through a frozen pre-trained GNN. During inference, the task ID of the
test graph is first inferred (i.e., task identification). Then, the graph prompt and the classifier of the
predicted task are retrieved to perform the node classification in GCIL. The GNN is trained on G!

and remains frozen for subsequent tasks.
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Method
Task Profiling for Task ID Prediction
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Method
Graph Prompt Learning
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Results

Table 1: Results (mean=std) under the GCIL setting on four large datasets. The best performance on
each dataset is boldfaced. 1" denotes the higher value represents better performance. Oracle Model
can get access to the data of all tasks and task IDs, i.e., it obtains the upper bound performance. “v'”
in Data Replay indicates the use of data replay in the model, and x denotes no data replay involved.

Methods Data CoraFull Arixv Reddit Products
Replay AA/%T AF/%T AA/%T AF/%T AA/%T AF/%7T AA/9%T AF/%T
Fine-tune X 3.54+0.5 -95.2+0.5 4.9+£0.0 -890.7+0.4 5.941.2 -97.943.3 7.60.7 -88.740.8
Joint X 81.24+0.4 - 51.320.5 - 07.140.1 - 71.520.1 -
EWC X 52.6£8.2 -38.5x12.1 8.5+1.0 -09.5+8.0 | 10.3=11.6 -33.2+26.1 | 23.8+3.8 -21.74+7.5
MAS X 6.5+1.5 -902.3+1.5 4.8+0.4 -72.244.1 02+145 -23.1£28.2 | 16.74.8 -57.04+31.9
GEM X 8.441.1 -88.4+1.4 4.9+0.0 -89.8+0.3 11.545.5 -02.445.9 4.5+1.3 -04.740.4
LwF x 334+1.6  -59.6+£22 | 99+£12.1 -43.6X=11.9 | 86.6%1.1 -0.241.1 48.2+1.6 -18.6E1.6
TWP X 62.6+£2.2 -30.6+4.3 6.7+1.5 -50.6=13.2 8.0+5.2 -18.8+9.0 14140 -11.442.0
ERGNN v 34.5+4.4 -61.6x43 | 21.5+£54 -70.0£5.5 82.7+04 -17.3+=0.4 | 48.3=1.2 -457+1.3
SSM-uniform v 73.0+£0.3 -14.8+=05 | 47.1+=0.5 -11.7x1.5 94.310.1 -1.440.1 62.0=1.6 -99+1.3
SSM-degree v 75.4+0.1 -9.7+0.0 48.3+0.5 -10.7£0.3 04.440.0 -1.340.0 63.32+0.1 -9.6+0.3
SEM-curvature v 77.7+£0.8 -10.0£1.2 | 49.940.6 -8.4+1.3 06.340.1 -0.6+0.1 65.1+£1.0 -9.54+0.8
CaT v 80.4+0.5 -5.3+£04 48.2+04  -12.6X0.7 07.340.1 -0.440.0 70.3£0.9 -4.54+0.8
DeLoMe v 81.0+£0.2 -3.320.3 50.640.3 5.1+:04 07.440.1 -0.140.1 67.5+0.7 -17.3£0.3
OODCIL v 71.3£0.5 -1.120.1 19.3+1.4 -1.0£0.4 79.34+0.8 -0.140.0 41.60.9 -1.620.4
TPP (Ours) X 93.4+0.4 0.00.0 85.440.1 0.00.0 99.5+£0.0 0.00.0 94.00.5 0.01+0.0
Oracle Model x 95.5+0.2 - 90.3+0.4 - 09.540.0 - 05.3+0.8 -
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