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PHYSICS-INFORMED NEURAL NETWORKS

Partial Differential Equation 

(PDE) on a domain Ω:

The solution minimizes:

Approximate the PDE 

solution with a neural 

network (PINN)
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THE NEURAL TANGENT KERNEL OF PINNS

Training the parameters of PINNs can 

be interpreted as a gradient flow:

Infinite-width limit

Consider

Is the Neural Tangent 

Kernel (NTK)

The following equation holds:

The loss decays as:

PINN with m parameters 

and NTK rescaling:
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WHAT ABOUT THE NONLINEAR REGIME?

Linear PDEs Nonlinear PDEs

NTK at initialization Deterministic Random

Almost sure convergence of the NTK at initialization 

fails with nonlinear PDEs.

We prove convergence in law to a stochastic variable, 

and its law can be explicitly determined.
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Linear PDEs Nonlinear PDEs

NTK at initialization Deterministic Random

NTK during training Constant Dynamic

Even under generous 

assumptions, we show that the 

constancy of the NTK during 

training does not hold for 

general nonlinear PDEs.

WHAT ABOUT THE NONLINEAR REGIME?



The Challenges of the Nonlinear Regime for Physics-Informed Neural Networks - A. Bonfanti, G. Bruno, C. Cipriani

Linear PDEs Nonlinear PDEs

NTK at initialization Deterministic Random

NTK during training Constant Dynamic

Hessian Hr Sparse Not sparse

Traditional proofs of the 

constancy of the NTK fail.

We prove that the Hessian of 

the residuals does not vanish.

WHAT ABOUT THE NONLINEAR REGIME?
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TRAINING WITH SECOND-ORDER METHODS

Linear PDEs Nonlinear PDEs

NTK at initialization Deterministic Random

NTK during training Constant Dynamic

Hessian Hr Sparse Not sparse

First order:

Gradient flow:

With K being the NTK 

Second order:

“Gauss-Newton“ flow:

With U unitary, and D diagonal with entries 0 or 1. 

Training dynamics: Training 

dynamics:
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TRAINING WITH SECOND-ORDER METHODS

Linear PDEs Nonlinear PDEs

NTK at initialization Deterministic Random

NTK during training Constant Dynamic

Hessian Hr Sparse Not sparse

I-order convergence bound ∼ λmin(K) ∼ 0 or ∼ λmin(K(t))

II-order convergence bound ∼ 1 ∼ 0 or ∼ 1

While ensuring fast convergence, second-order methods mitigate the issue of 

spectral bias when training PINNs on PDEs containing high-frequency components.
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WAVE EQUATION
(linear, spectrally biased)

TRAINING WITH SECOND-ORDER METHODS

BURGER EQUATION
(nonlinear)

ADAM Levenberg-Marquardt (LM) Ground Truth
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ADVECTION EQUATION
(linear, Curriculum Training)

TRAINING WITH SECOND-ORDER METHODS

POISSON EQUATION
(linear, Random Fourier Features)

NAVIER STOKES’ EQUATIONS
(nonlinear, Causality-based training)
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