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Motivation
Real-world Scenarios
Daily music recommendation influence users’ future listening
behaviour (such as: no action, promote songs from musician "A"
by 10% or demote songs from musician "B" by 20%).

Figure 1: Toy example of time series with different interventions.



Problem

▶ Consider a more complex setting where the treatments may
take different values for a single individual over time, often
refereed to as time-varying treatments [10].

▶ How do we predict the effect of combinations of categorical
action/intervention sequence in the future?

Challenges
▶ Can be treated as a standard prediction problem (i.e.

supervised sequential modelling with LSTM [11], GRU [9],
Transformers [21] etc.)

▶ Large categorical space, sparse interactions (mostly "default"
action) and no-obvious structural assumptions between actions
(in contrastive to distributed representations in natural
language).



Literature

▶ Mostly used black-box models (LSTM, GRU and Transformers)
or parametric models (often with strong Markovian
assumptions [8, 20]) on short sequence and small action space.

▶ Some research focused on large action space, but lack of
compositional identification. [12, 15, 18, 19]

▶ Other recent research deal with combinatorial categorical
spaces [1, 5], but lack of longitudinal component.

▶ This work focus on extrapolation of unseen interventions in
sequential and compositional setting in the future.



Problem statement
▶ Individual user n with optional time-invariant features Zn;
▶ Time-series of user’s behaviour X 1:T−1

n := [X 1
n , · · ·XT−1

n ] and
associated actions (interventions) D1:T−1

n := [D1
n , · · ·DT−1

n ].

▶ Predict future behavior XT ,T+∆
n := [XT

n , . . . ,X
T+∆
n ] under

(hypothetical) future actions do(D1:T+∆
n ).

▶ We consider the case where sequential ignorability holds, by
randomization or adjustment [16, 10].

Graphical Model
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Within unit n, actions Dt
n interact with (latent) variable βn to

produce behavior X t
n represented as a dense graphical model.



Assumptions

We assume behavioral measurements X t
n have the following

conditional mean factorisation for the regime do(D1:t
n ),

E[X t
n | X 1:t−1

n ,Zn, do(D1:t
n )] = (ϕtn)

T(βn ⊙ ψt
n) =

r∑
l=1

ϕtnlβnlψ
t
nl ,

(1)
where ϕtnl := ϕl(x

1:t−1
n , zn) (evaluation of basis function) and

ψt
nl :=

∏t
t′=1 ψl(d

t′
n , t

′, t) (evaluation of sequential interventions).
We choose ψl(d , t

′, t) := σ(w1dl)
t−t′ × w2dl + w3dl (motivated by

[6])

Inspiration
▶ Tensor Factorisation for Causal Imputation [3, 4, 2].
▶ Functional analysis f (xa, xb) ≈ f T

a (xa)fb(xb) (e.g. Proposition
1 [12]).



Algorithm: CSI-VAE

We call our method Compositional Sequential Intervention
Variational Autoencoder (CSI-VAE).

Statistical Inference
▶ We optimize the (marginal) log-likelihood using a black-box

amortized variational inference framework [13, 14, 17].
▶ We use GRU model to approximate mean-field Gaussian

posterior.
▶ The approximate posterior at time step t is thus
µq,β,n := MLP(GRUηβ,1(d

1:t
n , x1:t

n , zn)), and
log σq,β,n := MLP(GRUηβ,2(d

1:t
n , x1:t

n , zn)).
▶ Prediction for XT :T+∆

n is done by sampling M = 50
trajectories and then use marginal Monte Carlo average.

▶ More details in paper.



Experiments
Data
▶ Fully synthetic data.
▶ Semi-synthetic Spotify data [7].

CSI-VAE Models
▶ CSI-VAE-1: proposed model.
▶ CSI-VAE-2: ablation, relaxed the product form of Eq. (1).
▶ CSI-VAE-3: ablation, relaxed the product form of ψ.

Baselines
▶ GRU-0: GRU uses X 1:T−1

n and Zn only.
▶ GRU-1: GRU uses X 1:T−1

n , DT−1
n and Zn only.

▶ GRU-2: GRU uses X 1:T−1
n , D1:T−1

n and Zn.
▶ LSTM: LSTM uses X 1:T−1

n , D1:T−1
n and Zn.

▶ Transformer: Transformer uses X 1:T−1
n , D1:T−1

n and Zn.

We compare our model against: (1) GRU-0, a black-box gated
recurrent unit (GRU, [? ]) composed with a MLP, using only the
past history of X 1:t

n and Zn; (2) GRU-1, another GRU composed
with a MLP that takes into account also the latest intervention Dt

n;
and (3) GRU-2, which uses not only Dt

n but also the entire past
history D1:t

n just like CSI-VAE. In general, GRU-2 can be considered
as a very strong and generic black-box baseline model. In addition,
we conduct experiments comparing other popular black-box baseline
models: (4) LSTM, [? ]; and (5) Transformer, [? ]. For those,
we use the same input setup as in the case of the GRU-2 model.



Main Results

Table 1: Main experimental results, averaged mean squared root error
over five different seeds.

Full Synthetic Semi-Synthetic Spotify

Model T+1 T+2 T+3 T+4 T+5 T+1 T+2 T+3 T+4 T+5

CSI-VAE-1 36.53 41.46 41.73 41.12 41.32 68.23 82.94 83.53 81.97 79.63
CSI-VAE-2 97.80 118.25 117.79 127.25 135.03 253.85 312.53 305.08 303.68 302.83
CSI-VAE-3 138.78 164.02 141.71 132.59 125.55 757.94 937.07 800.55 704.66 634.72

GRU-0 229.72 269.66 220.95 208.30 188.43 215.42 260.65 193.41 137.20 117.06
GRU-1 230.76 270.83 220.93 208.33 184.92 223.61 269.69 205.91 141.53 126.36
GRU-2 93.73 101.03 118.01 88.53 132.28 154.18 187.42 177.96 133.36 127.58
LSTM 114.71 126.65 137.12 105.22 137.19 130.35 156.02 133.28 94.35 85.92
Transformer 111.66 122.08 150.57 175.84 87.89 133.42 157.66 154.61 164.70 158.03



Further Results

Figure 2: Top: Fully-synthetic (left) and semi-synthetic Spotify (right).
Bottom: How errors change as training sizes are increased.



Summary

▶ The results show the superiority of our model against strong
baselines.

▶ We also observed that the structural assumptions are critical,
as evidenced by the drop in performance for CSI-VAE 2 and 3.

▶ We show that even with more data provided, our model
consistently outperforms the black-box models (cannot solve
this problem by simply feeding in more data).

Take Away
▶ Embedding is important, but how to incorporate structures

into embedding is more critical for generalisation.
▶ Black box models are powerful, but we can make it even more

powerful with additional structural information.
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