Structured Learning of Compositional Sequential
Interventions
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Motivation

Real-world Scenarios

Daily music recommendation influence users’ future listening
behaviour (such as: no action, promote songs from musician "A"
by 10% or demote songs from musician "B" by 20%).

Time Series with Different Interventions
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Figure 1: Toy example of time series with different interventions.



Problem

» Consider a more complex setting where the treatments may
take different values for a single individual over time, often
refereed to as time-varying treatments [10].

» How do we predict the effect of combinations of categorical
action/intervention sequence in the future?

Challenges

» Can be treated as a standard prediction problem (i.e.
supervised sequential modelling with LSTM [11], GRU [9],
Transformers [21] etc.)

» Large categorical space, sparse interactions (mostly "default"
action) and no-obvious structural assumptions between actions
(in contrastive to distributed representations in natural
language).



Literature

» Mostly used black-box models (LSTM, GRU and Transformers)
or parametric models (often with strong Markovian
assumptions [8, 20]) on short sequence and small action space.

» Some research focused on large action space, but lack of
compositional identification. [12, 15, 18, 19]

» Other recent research deal with combinatorial categorical
spaces [1, 5], but lack of longitudinal component.

» This work focus on extrapolation of unseen interventions in
sequential and compositional setting in the future.



Problem statement

» Individual user n with optional time-invariant features Z,;

» Time-series of user's behaviour X}7—1 :=[X1 ... XT~1] and
associated actions (interventions) D}7~1 :=[D},--- DT 1].

> Predict future behavior X,/ T2 := [XT,..., XT+2] under
(hypothetical) future actions do(D2Y T+4).

» We consider the case where sequential ignorability holds, by
randomization or adjustment [16, 10].

Graphical Model
ﬁ"

Within unit n, actions D interact with (latent) variable 3, to
produce behavior X! represented as a dense graphical model.



Assumptions

We assume behavioral measurements X! have the following
conditional mean factorisation for the regime do(D}t),

E[Xy | Xa™ Y, Zo,do(Dy )] = (85) T (Bn © 05) = D SyBartdiys

1=1
(1)

where ¢t := ¢(x}*1, z,) (evaluation of basis function) and

to= L i(dE ¢ t) (evaluatior) of sequential interventions).
We choose v,(d, ', t) := o(wig))'™" X wag + wag (motivated by
[6])
Inspiration

» Tensor Factorisation for Causal Imputation [3, 4, 2].

» Functional analysis f(xa, xp) ~ £,7 (xa)f5(x5) (e.g. Proposition
1 [12]).



Algorithm: CSI-VAE

We call our method Compositional Sequential Intervention
Variational Autoencoder (CSI-VAE).

Statistical Inference

>

>

| 4

We optimize the (marginal) log-likelihood using a black-box
amortized variational inference framework [13, 14, 17].

We use GRU model to approximate mean-field Gaussian
posterior.

The approximate posterior at time step t is thus
KqBn = MLP(GRUnﬁ’l(d“ X}t z,)), and

n ) n )
log 0q,5,n := MLP(GRU,, , (d}*, x}*, z,)).
Prediction for X.7:T+4 is done by sampling M = 50
trajectories and then use marginal Monte Carlo average.

More details in paper.



Experiments

Data
» Fully synthetic data.
» Semi-synthetic Spotify data [7].

CSI-VAE Models
» CSI-VAE-1: proposed model.
» CSI-VAE-2: ablation, relaxed the product form of Eq. (1).
» CSI-VAE-3: ablation, relaxed the product form of .

Baselines
» GRU-0: GRU uses X}~ and Z, only.
» GRU-1: GRU uses X}T~1, DT=1 and Z, only.
» GRU-2: GRU uses X}'7—1 DLT-1and Z,.
» LSTM: LSTM uses X} 7—1, D}T-1 and Z,.
>

Transformer: Transformer uses X171 D}7-1 and Z,.



Main Results

Table 1: Main experimental results,
over five different seeds.

averaged mean squared root error

Full Synthetic

Semi-Synthetic Spotify

Model [T+1 T4+2  T43  T+4 T45 [T+l T+2  T+3  T+4  T45
CS-VAE-1 | 3653 4146 41.73 4112 41.32 |6823 8294 8353 8197 79.63
CSI-VAE-2 | 97.80 118.25 117.79 127.25 135.03 | 253.85 312.53 305.08 303.68 302.83
CSI-VAE-3 | 138.78 164.02 141.71 13259 125.55 | 757.04 937.07 800.55 704.66 634.72
GRU-0 22072 260.66 220.95 208.30 188.43 | 21542 260.65 19341 137.20 117.06
GRU-1 230.76 270.83 220.03 208.33 184.02 | 223.61 260.69 20591 141.53 126.36
GRU-2 9373 101.03 118.01 8853 132.28 | 154.18 187.42 177.06 13336 127.58
LSTM 11471 126.65 137.12 10522 137.19 | 130.35 156.02 133.28 90435 85.92
Transformer | 111.66 122.08 150.57 175.84 87.89 | 133.42 157.66 154.61 164.70 158.03




Further Results
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Figure 2: Top: Fully-synthetic (left) and semi-synthetic Spotify (right).
Bottom: How errors change as training sizes are increased.



Summary

» The results show the superiority of our model against strong
baselines.

» We also observed that the structural assumptions are critical,
as evidenced by the drop in performance for CSI-VAE 2 and 3.

» We show that even with more data provided, our model
consistently outperforms the black-box models (cannot solve
this problem by simply feeding in more data).

Take Away
» Embedding is important, but how to incorporate structures
into embedding is more critical for generalisation.

» Black box models are powerful, but we can make it even more
powerful with additional structural information.
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