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TL:DR Koodos: Koopman operator driven CTDG framework Visualization
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B Key Assumption: Distribution Continuity
B \We assume that data distributions evolve continuously over time: |
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Fig 3. Visualization of decision boundary of the 2-Moons dataset (purple and yellow show data regions,
red line shows the decision boundary). Top to bottom compares two baseline methods with ours; left to
right shows partial test domains (all test domains are marked with red points on the timeline). All models
are learned using data before the last train domain.

Fig 1. An example of continuous temporal domain generalization. Consider training classification models |
for public opinion prediction via tweets, where the training domains are only available at specific political

events (e.g., presidential debates), we wish to generalize the model to any future based on the underlying d _
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B Key Theorem: Model Continuity

Last Train Domain ﬁTime ﬁTime ?Time
B |t can be proved that the model parameters are also continuously evolving:
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® Traditional Temporal Domain Generalization
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B Key Methodology : Model Dynamic Systems :
B Encouraging topological conjugation (ho{ = (o f)to synchronize model |
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v Domains are randomly and sparsely distributed along a

i continuous timeline. ' I dynamics with data dynamics. I (2) Koodos (b) DRAIN (c) DeepODE

i v" The model can seamlessly generalize to any given point in time. | 1 r t ti | ModelSpace | @ g : Fig 4. Interpolated and extrapolated predictive model trajectories. Left: Koodos captures the essence of
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\ Y Contro"mg the generalization process by inductive bias. / : ¢ i=1 =1 ! tj @ : probabilistic model, fails to capture continuous dynamics, which is presented as jumps from one random state
~ NP - | | D“t“S”m I | to another. Right: DeepODE demonstrates a certain degree of continuity, but the dynamics are incorrect.

Critical Hurdles:

— How to model model dynamics and synchronize them with data dynamics?
— How to capture the dominant dynamics within over-parametrized model?

— How to ensure stability and controllability for long-term generalization?
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Results

. - - | Table 1: Performance comparison on continuous temporal domain datasets. The classification tasks
| - Step 2. MOdelmg Nonlinear Model Dynamlcs by Koopman Operators ] report Error rates (%) except for the AUC for the Twitter dataset. The regression tasks report MAE.

i ’N/A’ implies that the method does not support the task.

B Model h in high-dimensional 6 spaces are computationally intensive
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B During training, the model observes a series of domains {D(t,),D(t,), ..., D(ty)}
collected at irregular time points 77 = {t,, t,, ..., t;}. Ateach t; € T, the model
learns a predictive function g(:; 8(t;)) for domain D(t;). The goal of CTDG is to
model the dynamic evolution of 8(t;), enabling the prediction of model
parameters 6(s) at any giventime s € 7.

i B Joint Optimization (five constraints as shown in Fig. 2 Right.) |
B Combination of Prior Knowledge ;
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: Operation Interface: X :
Dynamic system control techniques can be B Analyzing the eigenvalue of K|

used for control model generalization! . M Adding constraints to X'
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