Achievable distributional robustness
when the robust risk is only partially identified
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Out-of-domain generalization
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Out-of-domain generalization
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Distributional robustness

Goal: given training data, generalize to a set of feasible test distributions,
called robustness set, by computing a minimiser of the robust risk
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In previously considered robustness scenarios, the

parameters 0/, and/or the robustness set 7°_, (0, ) are
considered to be known:

Distributionally robust Os = Prain
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Often, 0, and/or &°_ . (0, ) are neither known nor
computable from training data
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Instead, they can be merely set identified.



We propose to minimise a nhew objective called the
identifiable robust risk:

L%1‘()b,ID(ﬁ; ®eq) .= Sup SUP ‘%(ﬁa [:D)
0eB,, PeP,(0)

Best achievable distributional robustness:
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Setting of structural causal models

Data model: linear structural causal model (SCM) with unobserved
confounding, environments differ via additive shifts A°:

X =A+n;
Y¢ = B, X¢+ &,

where (n,¢&) ~ N/ (0,2,) and 0, = (2, f, ) are the model parameters.




Setting of structural causal models

Some structural knowledge about the strength and direction of the test shift:
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ldentifiable robustness for the SCM setting

We compute the identifiable robust risk explicitly:

R 105105 O YT 1) = R(B;0,) + YIS (B° = PlI5 + 1(Cpe, + IR I,

Reference risk Invariance term Non-identifiability term

where;

- §: test shift directions along which the causal model can be identified
- R: test shift directions along which the model is non-identifiable

- (.~ max. norm of the model along non-identified directions



ldentifiable robustness for the SCM setting

We compute the identifiable robust risk explicitly:

R 105105 O YT 1) = R(B;0,) + YIS (B° = PlI5 + 1(Cpe, + IR I,

Reference risk Invariance term Non-identifiability term

- We prove a lower bound for the id. robust risk which is tight for large ¥;

» For large y, we prove suboptimality of existing robustness methods such

as anchor regression [Rothenhausler et al. 2021] and DRIG [Shen et al.
2023].



Simulations on Gaussian SCM data:
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Experiments on real-world gene expression dataset [Replogle et al. 2022]:
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Outlook

« Extension to classification
« Nonlinear models

« Use for active intervention
selection

 Partially identifiable framework
beyond causality
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