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Introduction

There exists no open

platform for fast in silico
screening of co-crystals
with target tabletability
profiles

Co-crystals play an important role in many
industries, such as energy, electronics,
optoelectronics, food, and pharma, especially

Tabletability of therapeutic agents can be
achieved by co-crystallization

Tabletability is defined by a set of mechanical
properties, such as plasticity
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We selected 1.75M samples from the We retrieved mechanical properties for 6k
ChEMBL database based on the relevant coformers from the Cambridge Structural
parameter distributions of the known Database (CSD)
coformers

Data

We used SMILES representations to We performed feature engineering and
extract molecular features with RDKit filtering as preprocessing steps



We trained generative models on

. 1.75M molecules from ChEMBL
Experlmental reSUItS and fine-tuned on the curated 6k

coformers from CSD
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Model

We trained generative models on

. 1.75M molecules from ChEMBL
Experlmental reSUItS and fine-tuned on the curated 6k

coformers from CSD
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Experimental results
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We trained generative models on
1.75M molecules from ChEMBL
and fine-tuned on the curated 6k
coformers from CSD

We trained ML models and
selected the best one predicting
mechanical properties of
coformers

We employed evolutionary
optimization to significantly
improve the tabletability profiles
of the generated coformers




Conclusion

We presented a generative pipeline for de
novo co-crystal design “GEMCODE" with

We demonstrated utility of the pipeline in
target property control

the Theophylline case study and

We systematically investigated discussed its current limitations
performance of its individual components
to achieve the best results

Experimentally validated coformers improving drug tabletability generated by GEMCODE.

Drug Generated SMILES CSD Refcode Model
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