Where Do Large Learning Rates Lead Us?

Ildus Sadrtdinov*

Maxim Kodryan*

Eduard Pokonechny*

Ekaterina Lobacheva[†]

Dmitry Vetrov[†]

Start training of NN with large LR and then anneal it

Training with **small LR** vs. **large initial LR + annealing**ResNet, CIFAR-10

Start training of NN with large LR and then anneal it

Training with **small LR** vs. **large initial LR + annealing**ResNet, CIFAR-10

Large initial LRs:

- faster convergence
- minima with favorable properties (generalization, flatter landscape, ...)

Start training of NN with large LR and then anneal it

Training with **small LR** vs. **large initial LR + annealing**ResNet, CIFAR-10

Large initial LRs:

- faster convergence
- minima with favorable properties (generalization, flatter landscape, ...)

Our focus:

1. Which initial LRs are **optimal** for test performance?

Start training of NN with large LR and then anneal it

Training with **small LR** vs. **large initial LR + annealing**ResNet, CIFAR-10

Large initial LRs:

- faster convergence
- minima with favorable properties (generalization, flatter landscape, ...)

Our focus:

- 1. Which initial LRs are **optimal** for test performance?
- 2. What are the key characteristics of models trained with **different LRs**?

SI ResNet-18, CIFAR-10

- (1) convergence
- (2) chaotic equilibrium
- (3) divergence

SI ResNet-18, CIFAR-10

- (1) convergence
- (2) chaotic equilibrium
- (3) divergence

SI ResNet-18, CIFAR-10

- (1) convergence
- (2) chaotic equilibrium
- (3) divergence

SI ResNet-18, CIFAR-10

- (1) convergence
- (2) chaotic equilibrium
- (3) divergence

Methodology

Fine-tuning with different FLRs

SI ResNet-18, CIFAR-10

Fine-tuning with different FLRs

SI ResNet-18, CIFAR-10

PLR from 2A:

optimal quality

Fine-tuning with different FLRs

SI ResNet-18, CIFAR-10

PLR from 2A:

optimal quality

Smaller PLR (regime 1):

• FLR ≤ PLR — no improvement

Fine-tuning with different FLRs

SI ResNet-18, CIFAR-10

PLR from 2A:

optimal quality

Smaller PLR (regime 1):

- FLR ≤ PLR no improvement
- FLR > PLR jump to better minimum

Fine-tuning with different FLRs

SI ResNet-18, CIFAR-10

PLR from 2A:

optimal quality

Smaller PLR (regime 1):

- FLR ≤ PLR no improvement
- FLR > PLR jump to better minimum

Larger PLR (regimes 2B, 3):

lower quality

Fine-tuning with different FLRs

SI ResNet-18, CIFAR-10

PLR from 2A:

same quality for all FLRs

Other PLRs (regime 1, 2B, 3):

quality depends on FLR

Fine-tuning with different FLRs

- Which LRs are best to start with?
- A narrow range just above the convergence threshold (subregime 2A)

SI ResNet-18, CIFAR-10

Fine-tuning with different FLRs

- Which LRs are best to start with?
- A narrow range just above the convergence threshold (subregime 2A)
- Why?..

SI ResNet-18, CIFAR-10

- \$\psi\$ angle closer in weight space
- ↓ error barrier same basin

PLR from 2A:

same basin

- \$\psi\$ angle closer in weight space
- ↓ error barrier same basin

PLR from 2A:

same basin

PLR from 2B:

distinct minima

SI ResNet-18, CIFAR-10

- \$\psi\$ angle closer in weight space
- ↓ error barrier same basin

- Why is 2A better than 2B?
- It locates a convex basin of good solutions

- ↓ angle closer in weight space
- ↓ error barrier same basin

Apply to test images

4 new test sets:

- background
- IOW
- mid
- high

PLR from 2A:

- feature sparsity
- prefers mid-frequencies

PLR from 2A:

- feature sparsity
- prefers mid-frequencies

Smaller and larger PLR

no sparsity

- Why is 2A so special?
- It learns a sparse set of the most relevant features

Conclusion

Best LRs to start training (subregime 2A)

- narrow range just above convergence threshold
- ✓ locate a convex basin with good solutions
- learn a sparse set of the most relevant features

arXiv

code

Conclusion

Best LRs to start training (subregime 2A)

- ✓ narrow range just above convergence threshold
- ✓ locate a convex basin with good solutions
- learn a sparse set of the most relevant features

Additional results in paper

- synthetic example with controlled feature learning
- conventional training setups, other architectures/datasets
- Stochastic Weight Averaging (SWA) instead of fine-tuning

arXiv

code

