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Benefits of large Learning Rates (LRs)

Start training of NN with

large LR and then anneal it
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Benefits of large Learning Rates (LRs)

Large Initial LRs:

Start training of NN with

| » faster convergence
large LR and then anneal it

* minima with favorable properties
(generalization, flatter landscape, ...)
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Setup and three regimes of training
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Setup and three regimes of training

Test accuracy, %
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Vethodology

Learning rate

PLR

Epoch

Start training Obtain final solution

 Fine-tune with

* Pre-train with a another LR (FLR)

fixed LR (PLR)

* FLR is taken from
regime 1 to ensure
convergence

* PLR is taken from
different regimes

FLR




Best LRs for generalization

Fine-tuning with different FLRs
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Best LRs for generalization

Fine-tuning with different FLRs PLR from 2A:
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Best LRs for generalization

Fine-tuning with different FLRs
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Fine-tuning with different FLRs
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Feature learning perspective
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Feature learning perspective

Frequency components

Original image
- .

Apply to test Images
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Feature learning perspective

Fine-tuning with FLR=1e-5
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Feature learning perspective

Fine-tuning with FLR=1e-5
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Feature learning perspective

Fine-tuning with FLR=1e-5
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Conclusion Of=40

Best LRs to start training (subregime 2A)
narrow range just above convergence threshold E
locate a convex basin with good solutions
learn a sparse set of the most relevant features
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Additional results In paper
* synthetic example with controlled teature learning e Ay
* conventional training setups, other architectures/datasets E5EP;EEEE:“E;E:EE;;::;:
» Stochastic Weight Averaging (SWA) instead of fine-tuning
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