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Introduction - 1

« Test-Time Adaptation (TTA):

- TTA adapts pre-trained models to unseen distribution of data during inference, using only input (i.e., images)
without labels by fine-tuning some layers.
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Effect of different test samples in test time entropy minimization
(Efficient Test-Time Model Adaptation without Forgetting, PMLR, 2022)



Introduction - 2

« Motivations:
Recent TTA methodologies have focused on minimizing entropy (EM), but this approach requires
forward/backward process and is limited in terms of data leveraging.
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Introduction - 3

Motivations:

Recent TTA methodologies have focused on minimizing entropy (EM), but this approach requires
forward/backward process and is limited in terms of data leveraging.
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Introduction -4

Goals:

1. Practicality in training: Minimizing the resources required for training such as memory, to attain
acceptable a reasonable prediction accuracy in a D;.

2. Scalability: Designing to be non-invasively and conveniently applicable in CNN-based tasks without
modifying other layers.

3. Data leveraging: Maximinzing usability from independent data to achieve TTA within constraints, even
with small batch sizes.

Approach:

By fine-tuning the first representation of the imput image, fast adaptation D; is possible. Therefore,

Instead of expensive entropy, we extract and minimize the channel-wise uncertainty from the
reconstructed stem layer.
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Goals:

1. Practicality in training: Minimizing the resources required for training such as memory, to attain
acceptable areasonable prediction accuracy in a D;.

2. Scalability: Designing to be non-invasively and conveniently applicable in CNN-based tasks without
modifying other layers.

3. Data leveraging: Maximinzing usability from independent data to achieve TTA within constraints, even
with small batch sizes.

Approach:

By fine-tuning the first representation of the input image, fast adaptation D; is possible. Therefore,

instead of expensive entropy, we extract and minimize the channel-wise uncertainty from the
reconstructed stem layer.
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L-TTA - Overview

« Overview of our proposed method including reconstructed stem layer
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Overview of our proposed method including reconstructed stem layer
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Overview of our proposed method including reconstructed stem layer
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Overview of our proposed method including reconstructed stem layer
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L-TTA - Gaussian Channel Attention Layer

« GCAL: Gaussian Channel Attention Layer
- The output channels of the squeeze and excitation layer are doubled, with half allocated to channel-
wise uncertainty.
- All channels are encouraged to produce the correct output for inputs with low uncertainty when

pretrained on D, with GCAL, as shown in the equation below:
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L-TTA - Gaussian Channel Attention Layer

« GCAL: Gaussian Channel Attention Layer
- Obviously, the D; has a potentially higher uncertainty due to the different data distribution (especially,
In the high-frequency domain)
- Based on these two facts, we minimize uncertainty about the unlabeled data in the D;.
- This process helps ensure that the performance of frozen subsequent layers can be leveraged like it
was in the D;.
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L-TTA - Domain Embedding Layer

« DEL: Domain Embedding Layer
- To alleviate entropy ambiguity, we propose DEL, which encapsulates GCAL and CONV layers with

discrete wavelet transform (DWT) and Inverse DWT layers.
- By decomposing a single data into low- and high-frequency domains through DWT, we can derive low

and high entropy respectively.
- Our reconstructed stem layer allow us to identify and minimize entropy within these freuquency

domains
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Experimental Results - 1

« Image Classification (REALM vs. L-TTA)
« Scenario 1. CIFAR-10 = CIFAR-10-C (+ 5.4%)

« Scenario 2: ImageNet = ImageNet-C (— 2.7%)

Method Noise Blur Weather Digital Avg.
Gauss. Shot Impul. | Defoc. Glass Motion Zoom |Snow Frost Fog Brit. | Contr. Elastic Pixel JPEG
CIFAR-10-C
Source 8.9 826 818 | 114 502 189 9.1 | 164 264 184 7.1 | 245 228 640 283 |36.6
Ours w/o GCAL | 624 554 485 | 121 517 155 85 | 166 264 21.7 64 | 31.0 213 617 225 |308
TENT([59] 394 388 479 | 199 450 232 206 | 28.1 321 245 161 267 324 306 355 (307
MEMO[65] 435 399 433 | 264 444 251 250|209 283 228 119| 283 211 428 21.7 |29
SFT[33] 319 267 289 | 177 442 184 202 | 208 234 207 139 254 245 219 251 |242
EATA[45] 339 328 414 | 194 424 205 201 | 224 270 227 138| 240 240 293 265 |26.7
SAR[46] 464 409 501 | 202 47.0 21.7 208 | 229 295 239 138| 255 243 395 274 |303
REALM][53] 278 254 355 | 155 377 174 169|204 223 19.0 129| 180 231 220 242 (225
Ours woDEL | 341 300 323 | 99 375 114 73 |129 133 11.7 57| 70 183 162 248 |182
Ours 317 274 309 | 91 351 113 6.9 | 129 137 122 55| 77 180 126 226 |17.2
ImageNet-C

Source 97.8 97.1 982 | 821 902 852 775|831 767 756 41.1| 946 831 794 684 |82.0
Ours w/o GCAL | 827 826 862 | 79.1 89.1 842 757 | 748 673 73.1 375| 846 741 432 552|726
TENT([59] 975 971 975 | 8.5 964 814 824 847 770 986 296| 57.8 938 508 462 785
MEMO[63] 815 795 816 | 829 874 782 731|596 530 656 305| 635 808 679 467 |688
DDA[17] 576 567 57.7 | 834 804 781 740 | 643 599 863 388 | 748 625 534 459 |64.9
EATA[45] 752 717 743 | 819 827 715 707 | 555 557 584 29.1| 554 730 532 443 |635
SAR[46] 766 734 761 | 816 B46 T14 696 | 55.1 553 743 27.7| 555 852 530 439 (655
REALM(53] 731 701 720 | 816 818 704 689 | 544 564 545 288 556 711 503 445 |62.2
Ours w/oDEL | 75.1 745 76.1 | 847 883 760 683 | 623 53.1 589 305| 81.8 645 626 57.0 |67.6 . . _
Ours 790 784 818 | 758 815 729 641 | 69.1 543 58.8 336| 733 576 41.0 543 |65.0 < 15 typeS Of Corruptlons Wlth most severe Ievel (_5) >




Experimental Results - 2

Consumed Memory Usage (EM vs. ECOTTA vs. L-TTA)
CIFAR-100-C (2.8%, and 8.8%)

ImageNet-C (1.7%, and 5.9%)

Training time (EM vs. DDA vs. ECOTTA vs. L-TTA)
L-TTA demonstrates 4.25x, 49.56x, and 1.76x faster in total latency.

Memory Usage (MB)

1400

1200

1000

800

600

400

200

m= BN_STAT

Entropy Minimization
(TENT, EATA, and REALM)

NN EcoTTA
N Ours

CIFAR-100-C

_ 91

ImageNet-C

Normalized Mcasurement (0 to 1)

1.0 I TENT
! DDA

NN EcoTTA
EEE Ours

0.8

0.6

0.4

0.2

0.0 4,_—-—.L;

CPU (ms) GPU (ms) Mem. (MB)

Metrics



Thank You!



	슬라이드 1: L-TTA: Lightweight Test-Time Adaptation  Using a Versatile Stem Layer
	슬라이드 2: Introduction - 1
	슬라이드 3: Introduction - 2
	슬라이드 4: Introduction - 3
	슬라이드 5: Introduction - 4
	슬라이드 6: Introduction - 4
	슬라이드 7: Introduction - 4
	슬라이드 8: Introduction - 4
	슬라이드 9: L-TTA - Overview
	슬라이드 10: L-TTA - Gaussian Channel Attention Layer
	슬라이드 11: L-TTA - Domain Embedding Layer
	슬라이드 12: L-TTA – Baseline
	슬라이드 13: L-TTA - Gaussian Channel Attention Layer
	슬라이드 14: L-TTA - Gaussian Channel Attention Layer
	슬라이드 15: L-TTA - Domain Embedding Layer
	슬라이드 16: Experimental Results - 1
	슬라이드 17: Experimental Results - 2
	슬라이드 18

