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Task vectors[1]

• Defined as the difference in network weights after fine-tuning

• Characterises the direction and stride of fine-tuning
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[1] Editing models with task arithmetic, Ilharco et al., ICLR’23



Task arithmetic

• Properties of task vectors that enable model editing via

• Addition – model merging

• Negation – remove model bias
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Task arithmetic (Cont.)

• Implications

• Task vectors can serve as knowledge carriers

• Learning problems may be simplified to learning a combination of task vectors
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Proposed method – aTLAS

Task vectors with learned anisotropic scaling

• Task vectors represented as a collection of m parameter blocks, with each 
block represented by a column vector.
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Proposed method – aTLAS

Task vectors with learned anisotropic scaling

• Task vectors represented as a collection of m parameter blocks, with each 
block represented by a column vector.

• Anisotropic scaling as a block-diagonal matrix, with each scaling coefficient                 
aaaaaaa   being a learnable parameter.

• Optimal composition of task vectors
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Intuitions

• Isotropic scaling vs. anisotropic scaling
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Application 1: Improved task arithmetic



Task arithmetic performance

Task negation

Task addition
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Observations

• Learned coefficients concentrate on weight matrices, and on deeper layers.
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Observations (Cont.)

• Learned coefficients concentrate on weight matrices, and on deeper layers.

• Anisotropic scaling can achieve lower disentanglement error, resulting in 
less conflict between different models during composition.
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[2] Task Arithmetic in the Tangent Space: Improved Editing of Pre-Trained Models, 

Ortiz-Jimenez et al., NeurIPS’23

[2][1]



Vancouver, Dec. 2024

Application 2:
Knowledge transfer in low-data regimes



Few-shot adaptation

• Complementarity with existing few-shot methods

• Robustness against domain shift
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[3] Tip-Adapter: Training-free CLIP-Adapter for Better Vision-Language Modeling, 

Zhang et al., ECCV’22

[4] LP++: A Surprisingly Strong Linear Probe for Few-Shot CLIP, 

Huang et al., CVPR’24



Test-time adaptation

Adapting a model without labelled data, using

• Entropy minimisation

• Contrastive objective

• Pseudo labelling
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[5] A Simple Framework for Contrastive Learning of Visual Representations,

Chen et al., ICML’20

[6] Towards Stable Test-time Adaptation in Dynamic Wild World, 

Niu et al., ICLR’23
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Application 3:
Parameter-efficient fine-tuning (PEFT)



LoRAs [7] as task vectors

Low-rank adaptations (LoRAs) are sparse task vectors
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[7] LoRA: Low-Rank Adaptation of Large Language Models, 

Hu et al., ICLR’22



Scaling up aTLAS

Higer performance across different percentage of data
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Conclusion

• We introduced an algorithm (aTLAS) for task vector composition

• Learned anisotropic scaling results in lower disentanglement error

• Learned coefficients concentrate on weight matrices, and on deeper layers

• aTLAS is complementary to existing few-shot methods

• aTLAS is robust to domain shift

• LoRAs can be integrated into aTLAS for memory efficiency

• aTLAS can be efficiently scaled up for higher performance
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