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Motivation
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• Do current pre-trained language models (LMs) encode hierarchical 
information explicitly and effectively?

• Not explicitly. Many LMs are optimised on text similarity for semantic 
search and paraphrasing [Reimers et al. EMNLP’19, Liu et al. NAACL’21] 

• Not effectively. LMs fail to capture transitivity of “is-a” [lin et al. ACL’22]



Our Contributions
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• An approach to re-train (diff. from standard fine-tuning) transformer 
encoder-based LMs as explicit Hierarchy Transformer encoders (HiTs), 
utilising the expansive nature of hyperbolic geometry

• Our results show: 

• More effective than pre-trained and (standard) fine-tuned LMs

• More effective than previous hyperbolic embedding methods and support 
inductive predictions within and across hierarchies

• Embeddings demonstrate geometric interpretability



Hyperbolic Geometry

4

• Constant negative curvature (as opposed to flat, zero curvature in 
Euclidean geometry)

• Usually defined by an open set with a metric tensor conformal (same 
angle measurement) to Euclidean geometry. 

• E.g., Poincaré ball is defined by an open ball Β𝑐
𝑑 = {𝑥 ∈ ℝ𝑑: ∥ 𝑥 ∥ <

1

𝑐
} where 𝑐 

is the curvature value

• Distances grow exponentially as approaching towards the boundary → 
naturally follows the expansion of hierarchy

• Theoretical property for embedding tree-like structure: 𝛿-hyperbolicity



Methodology
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• Square: LMs’ last output activation 
is tanh , mapping each dimension 
to [−1, 1].

• Circle: Poincaré ball of a negative 
curvature −1/𝑑 that circumscribes 
LMs’ output embedding space.



Methodology
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• Hyperbolic Clustering Loss: to cluster related 
entities while distancing unrelated ones.

ℒ𝑐𝑙𝑢𝑠𝑡𝑒𝑟 = ෍

𝑒,𝑒+,𝑒− ∈𝒟

max(𝑑𝑐 𝐞, 𝐞+ − 𝑑𝑐 𝐞, 𝐞− + 𝛼, 0)

• Hyperbolic Centripetal Loss: to position the 
parent entities closer to the manifold’s origin 
than child counterparts.

ℒ𝑐𝑒𝑛𝑡𝑟𝑖 = ෍

𝑒,𝑒+,𝑒− ∈𝒟

max( 𝐞+ − 𝐞 + 𝛽, 0)



Methodology
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• Overall loss is the linear combination of the two hyperbolic losses.

• Subsumption Prediction Function: probe HiT models to predict entity 
subsumptions

𝑠 𝑒1 ⊑ 𝑒2 = −(𝑑𝑐 𝑒1, 𝑒2 + 𝜆 ∥ 𝑒2 ∥𝑐−∥ 𝑒1 ∥𝑐 )

where 𝑐 is curvature, 𝜆 is the weight for hyperbolic norm diff.



Task Definitions
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Multi-hop Inference: We define base edges as those asserted in the 
hierarchy; the task aims to infer transitive (multi-hop) edges from base 
edges.

Mixed-hop Prediction: We split base edges for training and testing. The 
test set represents missing subsumptions (which may lead to unseen 
entities). Models are required to predict subsumptions between arbitrary 
(mixed-hop) entity pairs.

Mixed-hop Prediction (Transfer): Trained on base edges of one hierarchy 
and tested on arbitrary entity pairs of another. 



Datasets
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• Main Hierarchies: WordNet, SNOMED-CT

• Transfer Evaluation: Schema.org, FoodOn, DOID



Baselines
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Pre-trained LMs: since no LMs are trained on encoding hierarchies 
explicitly, we design probes that follow the pre-training objectives for 
prediction.

Fine-tuned LMs: attaching a downstream layer for end-to-end 
classification.

Hyperbolic Baselines: Poincaré Embedding [Nickel et al. NeurIPS’17], Hyperbolic 
Entailment Cone [Ganea et al. ICML’18], and Poincaré GloVe [Tifrea et al. ICLR’18].



Results
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HiTs consistently perform 
better than all baselines

Not doing well on hard negatives but 
with high recall → good on predicting 
positives but not separating negatives

Strong performance but do not 
support inductive predictions

Support inductive predictions but 
limited by word-level vocabulary



Analysis
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Fig. Distribution of entity hyperbolic norms.

Table. Statistical correlations between entities’ hyperbolic 
norms and depths in the WordNet hierarchy.

Table. Case study of specific entity embeddings.



Future Work
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• Encoding multiple hierarchical relationships within one model (mHiT?)

• Mitigate catastrophic forgetting resulted from hierarchy re-training

• Hierarchy-based semantic search that contrasts with traditional 
similarity-based one

• Pre-train, or further pre-train an LM on a large set of hierarchies
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