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Takeaways

If the number of training data is limited
and completions are short, including the
prompt loss during instruction tuning
might be advantageous on various NLP
and open-ended generation tasks.

We identify two scenarios where including
the prompt loss is particularly useful: (1)
The ratio between instruction length and
output length in the training data is high;
and (2) The number of training examples
is limited.

The improvement stems from reducing
the tendency to overfit, particularly under
limited training resource conditions:
Instruction tuning on brief outputs or a
small amount of data can potentially lead
to rapid overfitting.

Limitations

The success of our approach relies on the quality
and diversity of the instructions and prompts in the
training datasets.

It is crucial to ensure that the instructions are
ethically sound and free from harmful or biased
content. Training on inappropriate or toxic
instructions may result in undesirable outputs.
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Main Experiments

Main experiment 1:: Performance differences between INSTRUCTION TUNING (IT, without the prompt
loss) and INSTRUCTION MODELLING (IM, with the prompt loss) on 7 datasets.

Our findings: In many scenarios, IM can effectively improve the model performance on both NLP tasks (e.g.,

MMLU, TruthfulQA, and HumanEval) and open-ended generation benchmarks (e.g., MT-Bench and AlpacaEval).
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Additional Experiments

Additional Experiment 1: Train and test loss analysis.
Our findings: IM has a higher train loss with lower test loss, suggesting that IM effectively mitigates the
overfitting issues compared to IT.
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Additional Experiment 2: Average BLEU Score comparison.
Our findings: IM produces outputs have less overlap with the ground truth outputs in training examples,
indicating less overfitting.
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Additional Experiment 3: Can KL divergence loss, as regularization, easily address overfitting?
Our findings: (1) Incorporating KL Loss reduces overfitting and reduces the performance degradation on
traditional NLP tasks; (2) KL Loss detrimentally affects model performance on open-ended generation tasks.
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Main experiment 2: Performance improvement, achieved by our approach INSTRUCTION MODELLING
(IM) compared to INSTRUCTION TUNING (IT) on the AlpacaEval 1.0.

Our findings: We identify two key factors influencing the effectiveness of IM: (1) The ratio between instruction
length and output length in the training data; and (2) The number of training examples.
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Additional Experiment 4: Performance comparison of IM and IM +NEFTUNE on AlpacaEval 1.0 and
various NLP benchmarks.
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