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Sparsity is important for interpretability
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Common metrics for evaluating sparsity of the model

# of leaf nodes 
in decision trees

# of parameters 
in neural networks

# of terms
in linear regressions
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This is not a sparse model.
(duration(month))*0.21+(credit_amount)*0.33+(installment_rate)*0.13+(present_residence_since)*-0.01+(age)*-0.11 +(number_of_credit)*0.03 
+(number_of_people_being_liable)*-0.01 +(provide_maintenance)*-0.09+(telephone)*-0.07 +(check_acocunt_existence=0-200DM)*0.06 
+(checking account = none)*0.35 +(credit_history=all_credit)*0.08 +(credit_history=critical_account)*-0.19 
+(credit_history=delay_in_paying)*0.01 +(credit_history=existing_credit_paid_back)*-0.05 +(credit_history=no_credit)*0.06 
+(purpose=business)*0.02+(purpose=education)*0.04 +(purpose=furniture/equipment)*-0.06 +(purpose=new_car)*0.12+(purpose=others)*-
0.01 +(purpose=radio/television)*-0.12 +(purpose=repairs)*0.01 +(purpose=retraining)*-0.01+(purpose=used_car)*-0.12 
+(saving_account=100-500DM)*0.02 +(saving_account=500-1000DM)*-0.03 +(saving_account=<100DM)*0.06 
+(saving_account=>=1000DM)*-0.04 +(saving_account=no_saving_account)*-0.13 +(present_employment=1-4years)*-0.03 
+(present_employment=4-7years)*-0.11 +(present_employment=<1year)*0.08+(present_employment=>=7years)*-0.06 
+(present_employment=unemployed)*0.0 +(personal_status_sex=divorced/married_female)*0.03 +(personal_status_sex=divorced_male)*0.03 
+(personal_status_sex=married_male)*-0.01 +(personal_status_sex=single_male)*-0.17 +(other_debtors=No)*-0.07 +(other_debtors=co-
applicant)*0.02 +(other_debtors=guarantor)*-0.06 +(property=car)*-0.03+(property=life_insurance)*-0.0 +(property=real_estate)*-0.13 
+(property=unknown)*0.04 +(other_installment_plan=No)*-0.2 +(other_installment_plan=bank)*0.05 +(other_installment_plan=stores)*0.03 
+(housing=free)*0.0 +(housing=doesn’t own)*0.36+(housing=rent)*0.04+(job=management)*-0.04+(job=skilled_employee)*-0.06 
+(job=unemployed_non-resident)*-0.0+(job=unemployed_resident)*-0.02

Why was Arun’s loan application denied?
The prediction is determined by one feature! 
He asked for over $10K!

“credit amount” term in the model



Recap of Decision Sparsity: SEV-

• Step 1: Define reference (usually either 0 or average of negative class)

• Step 2: Define Boolean hypercube for query x:
• coordinatej is 1 if feature j is xj
• coordinatej is 0 if feature j is at reference value rj
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Recap of Explanation Sparsity: SEV-

• Step 1: Define reference (usually either 0 or average of negative class)

• Step 2: Define Boolean hypercube for query x:
• coordinatej is 1 if feature j is xj
• coordinatej is 0 if feature j is at reference value rj

• Step 3: Define SEV- for x. Moving from x
towards reference, SEV- is the minimum 
l0 distance to a negative label.
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SEV- is sensitive to the reference selection

7



Selection criteria for references
Reference and Query are under 

the same subpopulationsMinimum number of 
features used for 

explaining decisions

Sparse explanations are under the 
original data distribution 
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Improving Closeness: Cluster-based SEV (SEV-C)

The process for calculating the SEV-C:

• Step 1: Selects the references by clustering the
negative populations, and regarding the cluster
centroid points as the references.

• Step 2: Assign each query their closest cluster
centroid as their reference points.

• Step 3: Go over the original SEV Calculation
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Special case for SEV-C: Tree-based SEV 

Step 1: SEV-T Preprocessing: Collect negative
leaf node information for each internal nodes

Step 2: Efficient SEV-T Calculation: Go over internal
node of decision path, and check all negative paths

Query

It have many useful properties and computational benefits!
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Optimizing SEV Variants for Models

Gradient-based Optimization (AllOpt)
• Maximize the fraction of points with SEV- =1

Search-based Optimization (TOpt)
• Find a model with the lowest SEV with 

in a set of classification models with 
the best performance

Figure 1: Rashomon Sets
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SEV-C improves in credibility and closeness

The grayer, the better.
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Optimization improves explanations while 
preserving model performance 

The model performance are not changed before and after optimization 
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More in the paper

• SEV Variants for further improving the sparsity and credibility of the explanations.

• Sparsity and Credibility comparison with counterfactual explanation methods.

• Score-based soft K-Means for avoiding positive predicted references

• Detailed Algorithms for tree-based SEV

• Timing experiments

• …
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