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" Multi-View Indoor 3D Object Detection

* Task Definition: It predicts 3D bounding box of objects in the scene and their
corresponding classes from NV posed images.

* Challenge: How to estimate geometry information from 2D images alone?

* Existing work: . P R —— ———
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Image source: Xu et al, “NeRF-Det: Learning Geometry-Aware Volumetric Representation for Multi-View 3D Object Detection”, ICCV 2023.



Multi-View Indoor 3D Object Detection

* Limitation of existing work: inaccurate geometry estimation

Reference Scene

 Our solution: MVSDet

Yating Xu, Chen Li, Gim Hee Lee. “MVSDet: Multi-View Indoor 3D Object Detection via Efficient Plane Sweeps”, Neurips 2024.



. Method Overview
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Yating Xu, Chen Li, Gim Hee Lee. “MVSDet: Multi-View Indoor 3D Object Detection via Efficient Plane Sweeps”, Neurips 2024.

Contribution 1:
Probabilistic
Sampling and Soft
Weighting as efficient
plane sweep

Contribution 2:
pixel-aligned
Gaussian Splatting as
a light depth
regularizer



Probabilistic sampling and soft weighting
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* Goal: efficiently learn geometry without sampling many depth planes.

* Method:
* Sample top-k depth proposals {dgy,, ..., didx, } With normalized probability score {Bigy,, - Bidx, }
 Feature back-projection to 3D voxel center p from i-th image:

- {BZ bfi ifd®) C {diax,, - -, diax, }

f; =
0 otherwise
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. Pixel-aligned Gaussian Splatting (PAGS)

* Goal: enhance depth prediction without much computation overhead.
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. Experiments

We use M=12 depth planes by default.

Table 1: Results on ScanNet. “GT Geo” denotes Table 2: Results on ARKitScenes. “GT Geo”
whether ground truth geometry is used as super- denotes whether ground truth geometry is used

vision during training. as supervision during training.

Method GT Geo mAP@.25 mAP@.5 Method GT Geo mAP@.25 mAP@.5
ImGeoNet[18] v 54.8 28.4 ImGeoNet[18] v 60.2 43 .4
CN-RMA [16] v 58.6 36.8 CN-RMA [16] v 67.6 56.5

ImVoxelNet [15] - 46.7 234 ImVoxelNet [15] - 27.3 4.3
NeRF-Det [21] - 935 27.4 NeRF-Det [21] - 39.5 21.9

Ours - 56.2 31.3 Ours - 42.9 27.0
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. Qualitative Results
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