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Problem!

Making the model fairer can reduce model accuracy.

As the model the model
becomes fairer accuracy
decreases

Model
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Training classifiers which are gender agnostic is more challenging for Dataset B than for Dataset A
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“For this dataset, what is the minimum
attainable fairness loss corresponding to each

accuracy threshold?”
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We cannot obtain the exact ground-truth
tradeoff curve [(9):
- We only have access to finite dataset
- The constrained optimisation

problem shown above is non-trivial
to solve
Can be computationally expensive
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single model
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Step | - Computationally Efficient Estimation:
Estimate the trade-off curve [(§) by training a
single model

Step Il - Calibration:

Using a held-out dataset, we construct
confidence intervals which are going to
contain the ground truth with probability at
least 1 —
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Key Takeaways

The severity of accuracy-fairness trade-off fundamentally
depends on dataset characteristics such as dataset imbalances
or biases.
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e The methodology provides the capability to specify desired
accuracy levels and promptly receive corresponding admissible
fairness violation ranges at inference time.
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Thank you!

OE S0

Check out our paper for additional details = ¢ ¢



