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Expressivity

Degree 6
Previous works

Finite difference methods
Finite element methods
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Potential applications

Aerospace engineering Solid-state physics

Turbulence theory

Environmental science Materials science

Medical science Catalysis and surface science

Density functional theory

Civil engineering Bioinorganic chemistry

Meteorology Radiation effects

Quantum field theory

Architecture

Mean-field game theory
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Summary

We propose the first learning scheme for functional differential equations (FDEs) to address
the significant computational complexity and limited approximation ability.

Our model, Functional PINN, exponentially extends the class of input functions and functional
derivatives (from polynomials of degree from 6 to 1000) and reduces computational costs
(from ~days to ~hours), a game changer in functional analysis!

Functional PINN consists of two key ideas: the physics-informed neural network (a universal
PDE solver) and the cylindrical approximation (spectrum decomposition of the input
functions).

We prove the convergence of the approximated functional derivatives and FDE solutions,
ensuring the cylindrical approximation to be safely applied to FDEs.

Our experimental results show that our model accurately approximates not only the FDE solutions
but also their functional derivatives, achieving L! relative error of ~1073 on the functional transport
equation and the Burgers-Hopf equation.




	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39

