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Produce a policy:

e At = Tp(St)

State: s,

which maximises the expected sum of
discounted rewards:
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It is impossible to accurately predict the long-term state dynamics given an
approximate observation.
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Adversarial methods can leverage this instability to significantly decrease
performance with a single attack.
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L(0) = — Z (Sg (R — vg(st) ) log wg(a¢|s;) + nH [mg(ay|s,)] ) + Z (V}E:I.I‘(St) + VEI(Ht))

— max(1,.5)

Dreamer V3 MLE Regularisation
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Reward MLE
Environment DR3 MLEDR3 | DR3 MLE DR3
Pointmass 869.5 880.5 0.0326 -0.0275
Cartpole Balance | 978.6 970.5 0.0249 0.0231
Cartpole Swingup | 781.4 866.4 0.0149 0.0235
Walker Stand 973.0 961.6 0.1688 0.0654
Walker Walk 948.6 950.7 0.1614 0.1405
Walker Run 646.3 698.4 0.1345 0.1106
Cheetah Run 737.7 675.2 0.0337 0.0283
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trajectories in continuous control tasks.
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2. Chaotic systems are highly sensitive to initial conditions, so it is impossible to
accurately predict the long-term state dynamics given a noisy observation.
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1. Deep reinforcement learning policies can produce chaotic state and reward
trajectories in continuous control tasks.

2. Chaotic systems are highly sensitive to initial conditions, so it is impossible to
accurately predict the long-term state dynamics given a noisy observation.

3. This instability can substantially decrease overall performance with a single
state perturbation.

4. To improve the stability of the control interaction, we propose Maximal Lyapunov
Exponent regularisation for Dreamer V3.
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