Learning Group Actions
on Latent Representations

Yinzhu Jin, Aman Shrivastava, P. Thomas Fletcher
Department of Computer Science
Department of Electrical and Computer Engineering

[UUNIVERSITY
J\VIRGINIA



Learning Group Actions

Group actions represent symmetries and geometric
transformations of data.

Recent work shows that explicitly modeling and learning group
actions enhances performance across various tasks.

An example: 2D rotations




Group Actions on Latent Factors

Group actions on latent factors but not on the image itself.
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We propose to learn group actions on latent representations.
A group element g in G acting on z is denoted as g.z
A group action satisfies:

|dentity: Je € G, e.g=4g
Compatibility: Vg,,9, € G, 9,.(91.2) = (9291)-2
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Latent Space Group Action Model

For a d dimensional group action:
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E: encoder, D: decoder
Optionally, decompose z into varying and invariant parts:

z = [z,; z;], 9.z = |g.zy; z]



Latent Space Group Action Model

Alternatively, use skip connection with attention to model
invariant components and image details better.
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Training Objective

Take a pair of data x4, x,, such that their latents

lie on the same orbit:
ZZ — g'Zl

The training loss is the reconstruction loss L, with group actions:

L= Lx(xz»D(g-Zﬂ) + Lx(be(g_l-Zz)),
2y = E(xy), z; = E(xy).



Induced Group Actions on Data Space

We prove that a group action on the latent space a,: 2 - 2,
induces a group action &, on the reconstructed data space X,
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if E(D(z)) = z, i.e. the latent representation is reconstructable.




Experiments
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Experiments
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Experiments

Table 1: Quantitative results on MNIST derived datasets and brain MRI dataset

Rotated MNIST  Rot. & bl. MNIST Brain MRI

1PSNR  1SSIM 1PSNR  1SSIM  1PSNR 1SSIM

Winter et al. [37] 21.97 0.874 14.05 0.586 NA NA
Hwangetal. [15]  15.29 0.992 10.19 0.990 27.43 1.000
Ours 26.07 1.000 23.55 1.000 35.99 1.000

Table 2: Quantitative results on 3D objects rendered datasets

NMR Plane in the sky
TPSNR  1SSIM  |[LPIPS {PSNR 1SSIM  |LPIPS

Dupont et al. [V] 26.91 0.899 0.091 24.25 0.773 0.239
Sajjadi et al. [25]  27.87 0.912 0.066 23.53 0.489 0.280
Ours 28.91 0.947 0.050 25.24 0.821 0.112




Swapping Varying and Invariant Parts
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