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We’d Like to Incorporate Textual Information when Modelling

* Textual information is currently underutilized in probabilistic
regression:

o Doctors notes, news articles, weather reports, csv headers...

* Incorporating prior information is hard.



LLM-Powered Probabilistic Prediction

LLM Processes allow you to make predictions:

1. By directly explaining, in plain language, the unique information
that you have about a particular problem.

2. That harness the massive latent knowledge in SOTA LLMs.



We developed a Regression Model That You Can Talk To.

User provides information to the model in plain language.

4

Training points °
shown to the model ‘ > | ®




We developed a Regression Model That You Can Talk To.

User provides information to the model in plain language.

Training points
shown to the model




Eliciting a Predictive Distribution from an LLM
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Eliciting a Predictive Distribution from an LLM
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LLMPs Have Flexible Data Handling

Multidimensional data: weather prediction (1D in, 3D out)
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Incorporating Side Information from Text

Task: Predict US housing prices using various features given 10 example houses.

*Case 1: model is given features as *Case 2: model is given numerical features with
only numerical values text labels.

“Location: Austin, Texas, Latitude: 30.45738,
Longitude: -97.75516, Zip Code: 78729, Median
“30.45738, -97.75516, 78729, Household Income: 107830.0, Zip Code Population:
107830.0, 30907, 1216.1, 1349, 3" 30907 people, Zip Code Density: 1216.1, people per
square mile, Living Space: 1349 square feet, Number
of Bedrooms: 3, Number of, Bathrooms: 2"

Same numerical information.



Incorporating Side Information from Text
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Using Mixtral-8x7B Instruction Tuned



Incorporating Side Information from Text

® True Price Numerical Features Numerical Features + Text
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Incorporating Side Information from Text
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Numerical Features + Text
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Thank You!

James Requeima John Bronskill Dami Choi Rich Turner David Duvenaud
University of Toronto  University of Cambridge University of Toronto  University of Cambridge University of Toronto
Vector Institute



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8: Multidimensional data: weather prediction (1D in, 3D out) 
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

