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Noisy Label Learning Problem
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Goal: Recover the ground truth (GT) classifier £ given (z1,%1), ..., (N, UN).
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Noise Generation Modeling Approach

» Among approaches including noisy label filtering [1-4], robust noise design [5-9], the noise
generation modeling [10-18] approach is the most popular.
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Instance-Dependent Noise Model

Noise generation model:

g' (@) = T'(z) f* ().

» Learning under instance-dependent confusion matrices is an ill-posed problem.
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Instance-Dependent Noise Model

Noise generation model:

g'(@) = T'(x) f*(@).

» Learning under instance-dependent confusion matrices is an ill-posed problem.
> Most existing works [12, 14, 15, 17, 19, 20] resort to a simplification: T%(x) = A%, Va .
» However, real data exhibits a more complex confusion matrix.
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Figure: Nominal images (left) exhibits similar labeling difficulty, whereas special /outlier images (right) display a wide range of
labeling challenges.
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Figure: Nominal images (left) exhibits similar labeling difficulty, whereas special /outlier images (right) display a wide range of
labeling challenges.

» We consider an instance-dependent noise model

Nominal samples:  T%(x,) = A* ,ifnec O C[N]
Outlier samples:  T%(x,,) = A%(z,) for some A%(-), otherwise.
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|dentifiability Guarantee

Proposed criterion:

K
minimize Lee & L Z Z ]l[@(:n) = k] log [Amf(wn) + ev(mm)] ) (1a)
{AmeA).{eiMee) feF S (mames k=1 k
N M
subject to Z 1 { Z He%m)Hz > 0} <C, (1b)
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5/7



|dentifiability Guarantee

Proposed criterion:

minimize Lee 2 — Z Z ]l[A(m) = k] log [Amf(a:n) + e%m)] . (1a)

{AmeA} {eMee) feF S mmes =1

subject to Z 1 { Z He(m)Hz > 0} <C, (1b)

Theorem (identifiability and Generalization)

Let ({An}, {é\;m)}, F) be any optimal solution of (1). The following result
holds with probability greater than 1 —2/S — K/T:

B, [minlf@) - 17 @] < Ko+ € +6a),

min || Ap — ALTIG = Ko®(n + &1 + &), ¥m,
where n? = O (,BMTD‘\/§ (v/Mlog S + (|| X || R]:)O'%)), II a permutation

matrix, and T = N — |Z| . In addition, we have exact outlier detection, i.e.,
=1
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on CIFAR-10 with synthetic labels
against different number of
annotators.
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Experiments using Real Datasets

Data.
» CIFAR10-N [21]. N = 60000, K = 10, M = 3 . The error rates of annotators are 17.23%,
18.12%, and 17.64%.
» LabelMe [22, 23]. N = 2688, K = 8, M = 59. The average error rate is 25.95%.
» ImageNet-15N: we acquire noisy annotations by asking AMT workers to annotate some images
from ImageNet. K =15, N = 2,514, M = 100. The average error rate of the annotators is
42.68%.

Table: Average classification accuracy on CIFAR-10N, LabelMe, and ImageNet-15N datasets, labeled by human annotators.

Bold black represents the best and blue represents the second best.

[ Method/Dataset [ CIFAR-1I0N [ LabelMe [ ImageNet-15N |
PTD 89.52 + 0.24 84.18 + 1.36 65.53 + 0.18
BLTM 75.68 + 0.47 82.10 + 0.56 66.57 £+ 0.76
VolMinNet 86.58 + 0.21 79.97 + 0.16 63.11 + 1.08
Reweight 89.56 + 0.30 84.51 + 0.50 65.85 + 2.93
GCE 78.01 +7.23 83.41 + 0.59 64.71 + 1.38
MEIDTM 68.69 + 0.31 83.53 + 0.21 72.66 + 0.58
CrowdLayer 87.38 + 0.43 82.80 + 0.90 61.36 + 2.73
TraceReg 86.57 + 0.24 82.83 +0.23 68.43 + 0.12
MaxMIG 90.11 + 0.09 83.73 + 0.84 81.13 + 1.42
GeoCrowdNet (F) 87.19 + 0.37 87.21 + 0.39 80.45 + 1.77
GeoCrowdNet (W) 86.43 + 0.44 82.83 + 0.75 68.79 + 0.27
COINNet (Qurs) | 92.09 + 0.47 | 87.60 + 0.54 | 93.71 + 3.26
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Qualitative Results
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Figure: Examples from CIFAR-10N with low (left) and high (right) s,, =
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Figure: Examples from ImageNet-15N with low (top) and high (bottom) s, = S_M_| IGSRUTEH
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