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Why fusion?
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Open challenges for
biomedical domains

Information from different biological scales can provide
crucial predictive context...

Qj” Organism
=N/ - ~ 7 Captured as images
|/ é Tissue

/’ D
&)  Cell

Genomics

N " Transcriptomics

\‘ |/ % Proteomics
\llif A O

|

Molecular dynamics

fusion models in

...but often require trading off modality-specific and

shared information

Preserve
structural signal

Mutual context

Missing data

o J
4 )
Lack of paired
data

o
4
Discovery
o J

Find a joint representation that encodes the uni-modal
structural information of each modality

Learn cross-modal information where one modality
contextualises another modality, vice versa

Handle missing data at training and inference time
(often neglected, but highly relevant in clinical
practice)

Often no clear modality counterpart between the
different scales, one-to-many cardinalities

Explain both uni-modal and cross-modal information
that the model has learned
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HEALNet uses shared and modality-specific
parameter spaces
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Preserve modality-specific
structural information

Learn cross-modal interactions

Missing modalities & lack of Easy inspection using modality-
paired data specific attention weights
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HEALNet preserves modality-specific structural
information

Table 1: Mean and standard deviation of the concordance Index on four survival risk categories.
We trained HEALNet and all baselines on four TCGA tasks and report the performance on the test
set across five folds. HEALNet outperforms all of its multimodal baselines and three out of four
unimodal baselines in absolute c-Index performance.
Model | BLCA BRCA KIRP UCEC
Uni-modal (Omics) 0.606 +0.019 0.580 + 0.027 0.780 £ 0.035 0.550 &+ 0.026
Uni-modal (WSI) 0.556 +£0.039 0.550 + 0.037 0.533 £0.099 0.630 + 0.028
Porpoise (Late) 0.620 +0.048 0.630 + 0.040 0.790 £ 0.041 0.590 + 0.034
MCAT (Intermediate) 0.620 £0.040 0.589 +£0.073 0.789 + 0.087 0.589 £ 0.062
MOTCAT (Intermediate) 0.631 £0.051 0.607 £0.069 0.810£0.062 0.587 = 0.083
MultiModN (Sequential Fusion) | 0.551 +0.060 0.582 + 0.084 0.753 £0.152 0.610 = 0.121
Perceiver (Early Fusion) 0.565 +£0.042 0.566 + 0.068 0.783 £ 0.135 0.623 + 0.107
HEALNet (ours) | 0.668 +0.036 0.638 + 0.073 0.812 £+ 0.055 0.626 + 0.037

Preserves modality-specific
structural information
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D
lterative attention setup allows to skip updates

for missing data

Table 2: Analysis of the performance of HEALNet, trained on all modalities, in scenarios with
missing modalities at inference, compared to unimodal baselines. Each test sample contains only
one of either the Omic or WSI modality. The scenarios include test sets consisting of samples with
only Omic modality, only WSI modality or a combination of both (at random). HEALNet achieves a
higher c-Index across datasets, implying effective encoding of cross-modal information and handling
different amounts of data with missing modalities.

Test 100% Omics 100% WSI 50%WSI + 50% Omics | WSI+Omic

Uni-modal HEALNet | Uni-modal HEALNet | Uni-modal HEALNet HEALNet
BLCA 0.606 0.618 0.487 0.501 0.547 0.612 0.668
BRCA 0.556 0.571 0.529 0.539 0.543 0.541 0.638
KIRP 0.771 0.773 0.518 0.526 0.644 0.714 0.812
UCEC 0.509 0.529 0.558 0.584 0.533 0.580 0.626

Effective handling of missing

Learns cross-modal interactions .
modalities
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Attention-based design allows some
explainability
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Dataset: UCEC

Figure 3: Illustration of model’s inspection capabilities using HEALNet on a high-risk patient of the
UCEC study. We use the mean modality-specific attention weights across layers to highlight high-risk
regions and inspect high-attention omic features. Individual patches can be used for further clinical
or computational post-hoc analysis such as nucleus segmentation. We observe that the high-risk
regions exhibit a very high concentration and different arrangement of epithelial cells (red) which is
commonly associated with the origin of various cancer types [Coradini et al., 2011].
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