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Goal

Give a model of how to infer natural language rules by doing experiments
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Give a model of how to infer natural language rules by doing experiments

Motivation: how scientists learn

- Come up with theories, plan and perform experiments, then revise theories



Domain: Zendo, an induction game
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Domain: Zendo, an induction game
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Inference

How should we perform inference?

One solution: Batch Inference

inference
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Inference

How should we perform inference?

The better and more human-like solution: Online Inference

inference experiment
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Online inference with Sequential Monte Carlo (SMC)
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LLM-SMC-S

Applying LLM-based kernel q to every particle is very expensive, however

- Introduce a novel variant of SMC: LLM-SMC-S

Procedure: LLM-SMC-S (A.3). Given H;, W, where p(h|z1.4, y14) = >, wt@ 1 [h = hgﬂ:

. Define unnormalized target densities y(h) = p(h, y1:, ©1:¢) and ' (h) = p(h, Y1:t41, T1:44+1)-
. Sample A’ ~ g1 (:|Ht, T1:441,Y1:6+1) (i-e., using LLM to revise hypotheses)
. Compute the weight w’ for h’ following

’ n A (B! (@)1
, AW, Hy, Wy) where A(K, Hy, Wi) = %Zw(zw (W)r(hy” |1 )

w' = :
ger1 (W |Hey T1io4 15 Yree41) o ¢ F(h{)

with the reverse kernel r(h|h’) defined as uniform up to strings of a maximum length.

. Repeat steps 2-3 (sampling/weighing) a total of n times, and normalize the weights. Optionally,

resample to generate an unweighted posterior (we always resample).

. Output: Hy,; and Wy 1, formed from n samples of h’, w’ with w’ normalized from step 4, which

approximate p(h|T1:¢41, Y1:641)-

The correctness of the above procedure is most easily understood using the following definition:

Definition: Proper Weighting [27]. Let (h) be an unnormalized target density, which we can
evaluate. Let the corresponding normalized target density be w(h) = % where Z = [ y(h)dhis

the normalization constant. A weighted particle h, w is properly weightegl with respect to -y if for any
function f,

Elwf(h)] = ZxEx(w[f (7))

Proposition 1. If H, W input to Procedure LLM-SMC-S is properly weighted with respect to -y, then
the output h’, w’ is properly weighted with respect to 4. (Proof in Appendix A.1.)



Results
Method Zendo ActiveACRE
Avg Pred Posterior Avg Pred Posterior ROC AUC F1 Task Solving
Human from [13] 5.26 - - - -
Direct LLM [31] 4.60 £0.19 0.83 £0.05 0.60 £0.02 0.86£0.04 0.00=0.00
Batch, Hard 6.01 +£0.19 0.89 +0.03 0.77£0.04 096 £0.01 0.10=£0.07
Batch w/ Refinement, Hard [9, 10] 6.18 +0.14 0.86 1 0.04 0.73+0.04 0.91+0.04 0.15+0.08

Online, Hard (Ours) 6.55 +0.13 0.924+0.03 0.87+0.04 0.98 4+ 0.01 0.35 = 0.11




Results
Method Zendo ActiveACRE
Avg Pred Posterior Avg Pred Posterior ROC AUC F1 Task Solving
Human from [13] 5.26 - - - -
Direct LLM [31] 4.60 £0.19 0.83 £0.05 0.60 £0.02 0.86£0.04 0.00=0.00
Batch, Hard 6.01 +£0.19 0.89 +0.03 0.77£0.04 096 £0.01 0.10=£0.07

Batch w/ Refinement, Hard [9, 10] 6.18 +0.14
Online, Hard (Ours) 6.55 +0.13

0.86 £+ 0.04 0.73+0.04 0.91+0.04 0.15+0.08
0.924+0.03 0.87+0.04 0.98 4+ 0.01 0.35 = 0.11




Understanding human behavior on rule induction tasks
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From Bramley et al 2018

‘I don’t know what'’s the correct rule, but if the scene has or or does not have ..., it's definitely not going to give stars”
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- We can represent this with fuzzy, probabilistic rules



Being more human-like with fuzzy rules

R? Score between Model and Human Predictions
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Being more human-like with fuzzy rules

Recipe for human-like models on Zendo
- Natural language instead of formal language for hypothesis space
- Online inference instead of batch inference

- AND fuzzy rules instead of deterministic rules



Thank you!



