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Background: Sequenced-based Offline RL
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Decision Transformer Prompt-based Decision Transformer

Sequenced-based offline RL algorithms abandon the traditional dynamic programming approach in offline RL and
adopt an autoregressive paradigm.

» Decision Transformer models trajectories using tuples of returns, states, and actions collected at different time
steps. Here, returns denote the cumulative reward from the current time step until the end of the episode.

» Prompt-DT formalizes offline RL as a few-shot policy generalization problem. It is trained on a set of tasks with
prompts and offline data, enabling it to generalize to new tasks.
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Motivation

O Traditional offline RL algorithms rely heavily on historical trajectory data,

Reinforcement Learning with Online Interactions and models may overestimate values for unseen actions or states,

resulting in suboptimal policies.

Environment

Snineiegent \7 O While sequence-based offline RL methods like fine-tuning work well in

specific scenarios, they often require task-specific data, limiting their

Offline Reinforcement Learning o _ _ _
applicability, especially when target task data is unavailable.

Environment m|

)

How can we better explore relationships between tasks to extract

Offline Agent

cross-task prompts and generalize to new downstream tasks?
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Contribution

O We designed DPDT (Decomposed Prompt Decision

Transformer) for knowledge extraction and zero-shot

general- ation Decomposed Prompt Tuning Test Time Adaptation
1Zatl .

RIS LD P -atd g

. . : Linear L
O By leveraging a pre-trained language model, DPDT B Uneartaver
decomposes multi-task prompts into cross-task and task- W(T),A(T) T)A(T) wT).HT)
C Embedding Layer ( Latign ]
specific prompts through distillation. i R SRl ik
[ & task prompt P}, ) ) A 2 ) N
DizMation i E L‘ task specific prompt P, ] ; _. i
O During testing, DPDT uses test-time adaptation (TTA) to (tescher prompt Pgeer) (& cmss-taskpmmpwc] (& vk
|

optimize prompts by aligning them with hidden layer

features of unlabeled test and training data.
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Method: Decomposed Prompt Tuning

* |nitialization:

DPDT is initialized using the pre-trained language model GPT2-small. Decomposed Prompt Tuning

* Prompt Decomposition:

@ Linear Layer

Given a set of training tasks S = (54,55, ..., 5,), the cross-task prompt
P.is designed to capture shared knowledge from S, while the task-

Embedding Layer

specific prompt P, allows each task to retain its unique knowledge. To f
reduce computational complexity in the implementation, Py is further [ ¢ “S"P""“P“’k é mé M(é “1(*‘5 é é
decomposed into two low-rank vectors v, € [ * ,u, € 17 * 5. Distillation : l'task spet:lfll::prompth

[teacher prompt Pff“"ke"] [' cross-task prompt P, ] ["- vk
|

P;:PCOPRZPCO(Uk(@uk)

Lyse = (a— M (Pf, 7))
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Method: Decomposed Prompt Tuning

* Prompt Distillation:

Algorithm 1 Decomposed Prompt Tuning

Due to the lack of explicit constraints in the specific Input: Training task set S, Offline datasets D o4, Batch size M, Learning
rate «v, training iterations N, teacher task prompts pieecier.
implementation process, directly implementing prompt Initialize: Initialize a 12-layer, 12-head DPDT M using GPT2-SMALL,
randomly initialize cross-task prompts P, and low-rank vectors v, uk.
decomposition on the multitask dataset S may lead to an overlap fort = 1to N do
for £ in S do
in the information learned by P. and Py, potentially undermining Select a trajectory 7 that contains M samples in task k.
Calculate P;; by Equation 3.
their ability to capture distinct intended details. Calculate L s and Lg;s according to Equations 4 and 5.

Computed loss function by Equation 6.
<+ 06— OéVgETotal.
end for
end for

_ teacher *12
Lais = E oy — Pl
ke|S|

Lrotal = Lrvse + ALgis
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Method: Test Time Adaptation

* Calculating the aligned token mean and variance

Test Time Adaptation
1 |X| |X| / \
w(T) = ==Y Hy, oi — (M)
3t D S, B .
e -1 PN 2 e ——— oo — e ]
. . . “THE =" F
e Calculating the alignment loss function 2 B
@ _E — —_— 2
1 & = z
2 2 — —_— s —p
Laign = 7 3 (Ia(T) = (D) |y + 07 (T) — o7(D)]1) : B )
L — \ - —_— —_ /
: 1 :
Algorithm 2 Test Time Adaptation u(T), d4(T) wa(T), 3(T) (T, 03(T)
Input: Test samples set X, Cross-task prompts P, (D), [ Lajign l
2 ;
o7 (D), The number of layers L. ),01(D) pa2(D),03(D) (D), o} (D)
I: forl=1to Ldo P e .T _______ b-------
2: for ¢ in X do . _ . ’ a0 2 I
3: Calculate H; ; obtained by inputting the concate- ! _ . e ~
nation of P. and i into DPDT. | e — ?
4: end for : g :
5: end for : L - =
6: for/ = 1to L do ' =
I
7: Compute z1;(7) and o7 (7)) by Equation 7. ' TR T T ' @ g :
8: end for | — —— z
9: Compute token distribution alignment loss by Equation 8. " Offline calculation of mean and variance for training samples s
10: Optimize Laign to wpdate ... ST oooosmossssssm s s s s s s
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Experiment: Main Results

Table 1: Results for Meta-RL control tasks (zero-shot scenarios).

MT-BC [44] MT-ORL [5] Soft-Prompt [45] HDT [17] Prompt-DT [6] DPDT-WP DPDT
Trainable Params 125.5M 125.5M 3.94M 12.94M 125.5M 1.42M 1.42M
Percentage 100% 100% 3% 10.31% 100% 1.14% 1.14%
Cheetah-dir 24 T1410.04 -86.924551 -4.21.455) 4532413 192497 11.734128 50.32.411.47
Cheetah-vel -201.6643057 -148.24.99 138 -171.23.490.58 -162.75.420.50 -192.38.411.80 -143.1449140 -139.88.1065
Ant-dir 131.89412.06 109211966 11945414 1154311022 123.46.410.70 101.49417.74 121.84.5.01
MW ML10 256.77+11.93 343.1619.40 246.42424.60 292144893 3173141498 204.88.28.96 371.01.9.41
MW ML45 2873711138 260.744.1958) 91.9711a.11 274.8841974 294.55.5 71 300714574 347.21:01.52
MW MT 10 5478311104 1064.58.2170 201.2347.11 964.57 11534 1087.54117.00 1015914074 1317.52.32>
MW MT 50 582.80413.48 929.74.,55 g 400.71 196 40 820.45497 19 994.63,5.99 1131.014, 17  1559.94.5 49
Average 225.76 354.04 130.62 309.79 373.88 374.66 518.28
Table 2: Results for Meta-RL control tasks (few-shot scenarios).
MT-ORL [5]  Soft-Prompt [45] HDT[17] Prompt-DT [6] DPDT-WP DPDT DPDT-F
Trainable Params 125.5M 394 M 12.94 M 125.5M 1.42M 1.42M 125.5M
Percentage 100% 3% 10.31% 100% 1.14% 1.14% 100%
Cheetah-dir -46.2243 .44 940.24 41 o8 875231494 934.78.4533 946.81417.24 955.17.8.03 1037.85.5.98
Cheetah-vel -146.6447 12 -41.8147.19 -63.814630 -37.8042.00 -48.0741 85 -30.73.1.88 -29.8549.46
Ant-dir 11051422 379.0141 75 361.49,563 411.96.9 28 308.104522 384.29 4109 400.01.4979
MW ML10 421.22.99) 379.82 11476 467 814307 315.0746.17 485.27 411931 535.52417.39 670.24.5 g%
MW ML45 264.14 49 67 448.72411 38 477194216 473.34 1412 519.28 1792 579.09110.42 600.44 41748
Average 120.60 421.204 423.56 419.47 442.27 484.66 535.74
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Experiment: Ablation Study

* Figure 2: Episodic accumulated returns.
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* Table 3: Ablation: The impact of prompt decomposition, prompt distillation and test time adaptation.

Decomposition  Distillation TTA  Cheetah-vel MW ML45 MW MTS50

X X X 171.23 91.97 400.71
X v v -163.05 108.01 709.81
v X v -160.10 273.99 1137.39
v v X -167.80 149.21 824.07
v v v -139.88 347.21 1559.94
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Experiment: Ablation Study

* Table 4: Ablation: The impact of model size.

Model size  Cheetah-vel Ant-dir MW ML45 MW MT50

(3,1,128) -164.88 129.34  288.14 749.18 * Figure 3: Ablation: The effect of

(12,12,768)  -139.88  121.84  347.21 1559.94 prompt length on DPDT’s zero-shot
(24,16,768)  -210.35 16599  292.48 1527.34 - -
generalization ability.

400

» Table 5: Ablation: The impact of data quality. — ' _
Cheetah-vel MLA45 2001

.

expert datasets -30.10  586.84 s i . .
medium datasets -41.73 502.64 E =200
random datasets -935.66 37.91 S 00

mixed datasets -30.73 579.09 2

—600 1

= Cheetah-vel
Ant-dir
= MW ML45

—800 1

* Table 6: Ablation: The impact of learning rate in prompt decomposition.

20 80 90
Prompt Length

w
[

l?“PL_:le—Z lTpC=16—3 lTpC=1€—4

Irp, =le-2 310.74 307.36 311.40
lrp, =le-3 198.17 350.99 338.21
lrp, =le-4 204.94 104.07 347.21
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Thanks!

hizheng@whu.edu.cn
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