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3D molecular learning learns 3D molecular representation to predict molecular properties

» Molecular
ﬁ\o ; Properties

3D Molecules

Challenges

UAnnotating scientific datais difficult
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Density Functional Theory (DFT) can be used to label molecular energy, but it is very slow



}'... NEURAL INFORMATION
"'?. , PROCESSING SYSTEMS
ole

FSL“ ﬂ\\\‘ Stony Brook

University
FLORIDA STATE

UNIVERSITY DARE TO BE

Pick next
data to get labeled

Labeled
Samples

Dataset/
Unlabeled Pool

Oracle/Human
Expert

Model

Performance

Motivation
» Pressing need for 3D molecular graphs
» 3D geometric configuration is crucial

» Need toincorporate specialized knowledge
of geometric configuration into AL!

Method:
» Both diversity and uncertainty for 3D GNNs

» Diversity: How a 3D molecular graph is different
from others

» Uncertainty: How the model is confident about
a 3D molecular graph
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EITwo 3D molecules can have different number of atoms, how to measure their d|verS|ty’?

Solution: Study Geometric Graph Isomorphism for diversity.

» Three isometries: reference distance, triangular, and cross-angle are used as basis for
expressive representation of 3D molecular graphs.

» Expressive power: reference distance < triangular < cross-angle

Figure 2: A and B are triangular isometric but not
cross-angular isometric. The angles Zbriaq,, Zcriayqay,,
and Zdriayg., in structure A are equal to the angles
LFO)raf(@gar). ZF(€)raf (agar). and Zf(d)raf(agar)
in structure B, respectively. However, the cross angle
Zdrycis not equal to the cross angle £ f(d)rs f(c).
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 Encode the isometries into a geometric descriptor by sets of statistical moments.

[ This geometric descriptor preserves Euclidean motion and permutation symmetries.

1 Our method is at least as expressive as the GWL test (the descriptor suffices to
distinguish any non-isomorphic molecular structures that are distinguishable by any 3D).
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Select a batch of samples with high uncertainty values

dComputed by:

— 2
02(0*|g*)= 1( n) ( n= 10n) += Zn 1Gn
Uncertainty of input g* : Variance thatis same across
Variance of all the sampled all the data samples

outputs for the input g~

0} is the output of nt" Bayesian Geometric Graph Neural Network(BGGNN)
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Active Sample Selection

Select a diverse set of
samples

Select samples the modelis
most uncertain about

\ /

max, |z r-+HAz'Dz

s.t. Zﬁ 2 =k - Only k samples can be queried

z; € {0,1}, Vi ~ in one AL iteration

is a binary vector

O The problem is equivalent to standard Quadratic Programming(QP) optimization problem
0 We relax the integer constraint into continuous constraints and solve it using GPU
implementation of QP solver
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LA subset of QM9 dataset
L Aspirin molecule of MD17 dataset

Train Size 25000 1000
AL Comparison Baselines Validation Size 10000 1000
(JRandom
OCoreset Test Size 10831 1000

ULearning Loss
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Ablation Study: MU Ablation Study: LUMO
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 Ablation study to observe the individual impact of uncertainty and
diversity components on mu and lumo properties of QM9 dataset
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O Study on the effect of different query size, k, in AL performance
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UThe work presents an Active Learning(AL) pipeline for informative data selection for 3D
molecular graphs

Novel diversity component based on the geometric representation of graph is proposed for
AL

UEmpirical study on medium-scaled QM9 and MD17 dataset demonstrates the effectiveness
of our framework

Future Work
Study the scalability of method on large scale molecular datasets, such as OC20
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Find our work at:

Git Repo

Ronast’s
Homepage

Wenhan’s
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