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Introduction

= Emerging Applications with Large Language Models (LLMs)

LLMs are now widely used for tasks like document summarization and article enhancement, showing increasing
importance in daily life.

= Fast-growing Capabilities of LLMs

Models such as Claude 3.5 and GPT-40 offer unprecedented power and accessibility, making it harder to distinguish
between Al-generated and human-generated content.

= Increasing Misuse of LLMs

The widespread accessibility of large language models (LLMs) has led to a rise in misuse, compromising content
authenticity and integrity, e.g., Al-generated phishing email and Al-assisted plagiarism

= |[nadequate Detection Methods

Existing detection tools lack the effectiveness and affordability to keep up with the development of advanced LLMs,
creating a significant gap in detecting Al-generated artifacts.
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= Utilize one or several pre-trained surrogate models to
simulate the generation process of LLMs

= Utilize various metrics on the surrogate model’s
output to calculate and assign a score to the given text

E P l l RD l l E =  Left figure from Mitchell, Eric, et al. "Detectgpt: Zero-shot Machine-Generated Text Detection using Probability Curvature." ICML. 2023.
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" Fine-tune a detection LLM to analyze the input text

and predict its label.

= Exploit more complex features from surrogate model’s
output and train a classifier to do the prediction

UNIVERSITY. " Right figure from Verma, Vivek, et al. "Ghostbuster: Detecting Text Ghostwritten by Large Language Models." NAACL. 2024.
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“For human-written text, the surrogate LLM has a poor
prediction for the next token and a strong memory of
the previous token, reflected in the output logits,
whereas the behaviors for LLM-generated text are the
opposite.”
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“For human-written text, the surrogate LLM has a poor
prediction for the next token and a strong memory of
the previous token, reflected in the output logits,
whereas the behaviors for LLM-generated text are the
opposite.”

(a) Next Token Rank, F1=0.55 (b) Last Token Rank, F1=0.73 [l (c) Both Rank, F1=0.78
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= We formulate the detection within a guided text completion scenario
= We first utilize a surrogate LLM to summarize the entire input text and obtain a summary as guidance

= Then we divide the input text as two segments and let the surrogate LLM complete the segment 2 based
on the summary and segment 1
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= \We propose a novel bi-directional cross entropy loss calculation method to capture both the prediction
and memorization information in the output logits, consisting of forward cross-entropy (FCE) loss and
backward cross-entropy (BCE) loss
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= \We partition the entire loss sequence into n segments
= For each segment i, we compute the statistical values of the sub-sequence [i, i+1, ..., n]

=" The entire step only uses one-time LLM inference to simulate the features when different lengths of
input text are given to the surrogate model
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" |[n the last step, we concatenate all the statistical features of both the FCE and BCE vectors into a one-
dimensional feature vector, which is then used to train a binary classifier to perform the classification.

= This trained classifier can be directly deployed to detect unseen data, whether from unknown LLMs or
unfamiliar text domains.
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Evaluation

Normal Dataset | Paraphrased Dataset

Data Type | Dataset Size Average Len. Min Len. Max Len. Median Len. | Dataset Size Average Len. Min Len. Max Len. Median Len.

Human 350 786.7 132 1736 715.0 - - - - -
Arxiv Machine 1750 787.1 101 1701 810.5 1400 875.8 174 1874 931.5
All 2100 787.0 101 1736 799.5 1400 875.8 174 1874 931.5
Human 164 631.5 132 1993 572.0 - - - - -
Code Machine 819 413.3 41 1908 352.0 656 493.6 13 2333 382.5
All 983 449.7 41 1993 387.0 656 493.6 13 2333 382.5
Human 2000 554.9 37 4959 407.0 - - - - -
Yelp Machine 9740 461.1 10 2548 414.0 8000 586.5 54 2593 537.0
All 11740 4717.1 10 4959 413.0 8000 586.5 54 2593 537.0
Human 1000 42499 1276 41470 3301.5 - - - - -
Essay Machine 4897 3827.7 515 21094 3486.0 3999 3666.8 129 19878 3284.0
All 5897 3899.3 515 41470 3449.0 3999 3666.8 129 19878 3284.0
Human 1000 2899.0 499 9933 2462.5 - - - - -
Creative Machine 4840 2851.9 176 13716 2620.0 4000 2924.4 85 16812 2674.5
All 5840 2860.0 176 13716 2588.5 4000 2924.4 85 16812 2674.5

= We extend existing datasets and craft a large-scale public dataset for more challenging Al-generated
texts, consisting of 25 distinct groups and more than 22,000 samples generated from 5 latest

commercial LLMs from OpenAl, Anthropic, and Google.

= Our extended datasets contains two long natural language datasets (Essay, Creative), two short natural
language datasets (Arxiv, Yelp), and a code dataset (Code)
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Evaluation

| Normal Dataset | Paraphrased Dataset | Normal Dataset | Paraphrased Dataset

Method GPT-3.5 GPT-4 Claude-3 Claude-3 Gemini | GPT-3.5 GPT-4 Claude-3 Claude-3 Method GPT-3.5 GPT4 Claude-3 Claude-3 Gemini | GPT-3.5 GPT-4 Claude-3 Claude-3

Turbo  Turbo  Sonnet Opus 1.0-pro | Turbo  Turbo  Sonnet Opus Turbo  Turbo  Sonnet Opus 1.0-pro | Turbo  Turbo  Sonnet Opus

Zero-shot Query | 0.5768 0.5835 0.6764  0.6667 0.6666 | 0.5587 0.6116 0.6916  0.6935 Zero-shot Query | 0.6300 0.5833  0.4351 0.3524  0.1854 | 0.6690 0.6784 0.6400  0.4545
Log Rank 0.6572 0.7006 0.8015 0.8809 0.8560 | 0.6628 0.6660 0.6634  0.6747 Log Rank 0.6581 0.6610 0.6611 0.6569 0.6583 | 0.6612 0.6611 0.6556  0.6581
LRR 0.6602 0.7031 0.8116  0.8596 0.8544 | 0.6654 0.6654 0.6654  0.6654 LRR 0.6639 0.6639 0.6639  0.6639 0.6542 | 0.6639 0.6639 0.6639 0.6639

2 DetectGPT 0.6654 0.6634 0.6673 0.6673 0.6673 | 0.6641 0.6628 0.6654  0.6654 -§ DetectGPT 0.6361 0.6474 0.6583 0.6612 0.6682 | 0.6612 0.6639 0.6639 0.6612
< RADAR 0.9566 0.7858 0.7034 0.7754  0.7868 | 0.9203 0.6970 0.6884 0.7202 O RADAR 0.6680 0.6653 0.6652 0.6597 0.6626 | 0.6598 0.6653 0.7322 0.6653
Raidar 0.8316 0.8157 0.8029  0.8289 0.7366 | 0.9004 0.8851 0.8052  0.8303 Raidar 09368 0.8220 0.6121 0.6156 0.4858 | 0.9325 0.8744 0.8250  0.6197
OpenAl Detector | 0.7889 0.6660 0.6673 0.6673  0.6976 | 0.7062 0.6654 0.6673 0.6673 OpenAl Detector | 0.7213  0.6977 0.6916  0.6542 0.6666 | 0.7514 0.6639 0.6639 0.6695
Binoculars 09097 09135 0.9256 0.9699 0.9560 | 0.6617 0.6971 0.8112 0.8672 Binoculars 0.7073  0.6512 0.6612 0.6653  0.6624 | 0.7101 0.6338  0.8041 0.7179
GhostBuster 09716 0.9886 0.9815 09813 0.9571 | 0.9700 0.9943 09814  0.9856 GhostBuster 0.8524 0.7942 0.6556  0.6749 0.3860 | 0.8662 0.7729 0.7757 0.5390
BISCOPE 0.9870 0.9928 0.9796  0.9885 0.9708 | 0.9769 0.9800 0.9625 0.9870 BISCOPE 0.9665 09655 0.8528 0.6069 0.7809 | 0.9659 0.9464 0.9691 0.9250
BISCOPE™ 09928 0.9943 09869  0.9913 0.9797 | 0.9870 0.9859 0.9593 0.9884 BISCOPE™ 09692 009586 0.8526  0.6620 0.7741 | 0.9597 0.9435 0.9600  0.9222

= On natural language datasets, BiScope outperforms nine state-of-the-art baseline detection methods
with 0.26 additional detection F1 score on average

= On code dataset, BiScope outperforms all the nine baselines with 0.21 detection F1 score increase on
average
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Evaluation
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= We also compared our BiScope with the latest version of the renowned commercial Al-generated text
detection tool — GPTZerol1l.

= Qur BiScope outperforms GPTZero in 72% of cases, particularly in the Code dataset, where it achieves a
0.19 average F1 score improvement.

E PURDUE [1] Edward Tian and Alexander Cui. "Gptzero: Towards detection of ai-generated text using zero-shot and supervised methods", 2023.
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Conclusion

= We propose a novel Al-generated text detection algorithm that exploits both the preceding token information (i.e.,
memorization) and the next token information (i.e., prediction) via an innovative bi-directional cross-entropy loss
calculation method.

= We are the first to utilize text summaries to guide the detection, further enhancing its effectiveness and robustness
toward heterogeneous data.

= We extend existing datasets and craft a large-scale public dataset for more challenging Al-generated texts, consisting
of 25 distinct groups and more than 22, 000 samples sourced from five latest commercial LLMs.

= WWe develop a prototype named BiScope, a detection pipeline without any fine-tuning needed for the detection LLM.
We evaluate it on our dataset and show that BiScope outperforms nine state-of-the-art baseline techniques.
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