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Federated Learning

Federated learning (FL), a communication-efficient and privacy-preserving

alternative to training on centrally aggregated data, relies on collaboration
between clients devices.
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Client Sampling

Prior Works DivFL (Balakrishnan et al., 2022), CS (Fraboni et al., 2021):
aim to select clients such that the resulting model update is an unbiased
estimate of the true update while minimizing the variance

min Z VF (W) - Z VFi (W

s kES(t 2

Assumption (Bounded Dissimilarity under Data Heterogeneity)

Gradient VF, (W) of the k-th local model at global round t is such that

HVF/((W(t)) — VF(W(®) ‘2 < 5 — peP(HPW)=HDY) _ ;2.

where D) is the data label distribution of client k, Dy denotes uniform
distribution, H(-) is Shannon's entropy of a stochastic vector, and
B>0,k>p>0.
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Convergence Rate Relying on Selected Clients

With Assumptions:
o Fi(-) is L-smooth;
o g (W) is unbiased and the variance is bounded by o;

@ Bounded Dissimilarity under Data Heterogeneity

Let n and R be the learning rate and the number of local epochs,
respectively. If the learning rate is such that n < SLLR, R > 2, then

o T-1 N

A t=0 k=1

where Ay, Ay, ® are positive constants, and w}i is the probability of
sampling client k at round t.
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Estimating local data heterogeneity

We can obtain the correlation between Ab; and the label distribution.

C
E[Abj] =7 (DJZSC - sj> ,
c=1

where D; is the proportion of samples with label j in the training batch.

We define a proxy function to estimate the data heterogeneity of client k,
A(AbK)Y £ H(softmax(Ab%), 1)),

where H(-) is Shannon's entropy and 7 is a temperature parameters.
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Heterogeneity-guided Clustering

Clustering: the server performs clustering algorithm to group clients with
varying level of heterogeneity based on the distance

Ab®) . Ab(K)
[Ab(®)] - [Ab(K]

Distance(u, k) = arccos < ) + A ‘I:IAb(”)) - I:I(Ab(k))‘ )

Hierarchical Sampling: sample clients from each cluster with probability
based on the average value H, across all clients in the cluster

e | exp(ytA) exp(v"Hy)
S exp(ytHL) T S exp(vtAL,

where 7! is a hyper-parameter.

; (1)
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Experimental Results

Part of the results on CIFAR100 dataset:
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Observation:

@ HiCS-FL (ours) improves the converged accuracy under medium and
severe heterogeneity.
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Experimental Results

Schemes FMNIST CIFAR10 Mini-lmageNet
acc = 0.75 speedup acc =0.6 speedup acc = 0.5 speedup

Random 149 1.0x 898 1.0x 191 1.0x
pow-d 79 1.87 1037 0.9} 432 0.4}
CS 114 1.31 748 1.27 186 1.0x
DivFL 478 0.34 1417 0.6} 726 034
FedCor 88 1.71 711 1.31 229 0.81
HiCS-FL 60 2.51 123 7.31 86 2.2¢

Observation:

@ HiCS-FL (ours) can accelerate the convergence by at most 7.3 times.
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