‘rﬁ g % SG-Nav: Online 3D Scene Graph Prompting for LLM-based Zero-shot Object Navigation & %'L
}: -4 3* " NEURAL INFORMATION

'l : : 1 2 I 1 13 1
Hang Yin-, Xiuwei Xu‘, Zhenyu Wu?, Jie Zhou*, Jiwen Lu 27, PROCESSING SYSTEMS
Tsinghua University 1 Tsinghua University, China 2Beijing University of Posts and Telecommunications, China "i‘k; .
0
Highlight Approach Experiments
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B To speed up the dense connecting process for real-time processing, we propose a new form of =i L # =
prompt. This enables LLM to generate relationships between all pairs of nodes in one-shot with “9.) N :
much less computational cost, comparing to navie generation approach.
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