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Abstract

This paper conducts a comprehensive study of the learning curves of kemel ridge
regression (KRR) under minimal assumptions. Our contributions are three-fold: 1)
we analyze the mle nf ey propertcs of the kemel, such as it spectral cigen-decay,

and th of the kernel; 2) we
dcmnnslmle the vn.hmty of the Gaussian Equwalr:nl Property (GEP), which states
that the generalization performance of KRR remains the same when the whitened
features are replaced by standard Gaussian vectors, thereby shedding light on the
analysis success of previous analyzes under the Gaussian Design Assumption; 3)
we derive novel bounds that improve over existing bounds across a broad range of
setting such as (in)dependent feature vectors and various combinations of eigen-
decay rates in the over/underparameterized regimes.

2/21



Kernel Ridge Regression (KRR)

Kernel Ridge Regression
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Learning Curve (in number of samples)

KRR with NTK with L=1
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Figure: The test error decreases with sample size n at a certain rate.
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Possible Settings

Assumption (IF - independent features) The random feature vector
has independent sub-Gaussian entries.
Assumption (GF - generic features) The random feature vector has
entries which exhibit some concentration results. Kernels which feature
vectors satisfies Assumption (GF):

Q@ dot-product kernels on hyperspheres;

Q kernels with bounded eigenfunctions;

Q radial base function (RBF) and shift-invariant kernels;

@ kernels on hypercubes.
Assumption (PE - polynomial decay)
Ak = Oy (k=(+2)) | 9 = ©, (k") for some constants a, r > 0. Source
coefficient s = 22, Ridge A = ©, (n™?).

1+a
Assumption (EE - exponential decay)

M= O (e7), 07 = O (e7*") for some constants a,r > 0. Source
coefficient s = 2 + 1. Ridge A = ©, (e™®").
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(Partial) Result

B %
e N N
test error = bias + variance.

Ridge strong weak
Feature (IF)_ (GF). aF) (GF)
(PE) B S) (n_bs)b (@] (n_bs)b © (n~(1+2%) A n~ove| bound
V|0 (c?n ) oo e © (0?) O (o2n%)
(EE) B €] (e’bg”)b o (e’bg")b O(e™"),s>1 O(e™®),s>1
V| e (a2n‘1+5) o (azn‘“E) catastrophic overfitting

Table: KRR Learning curve: n is the sample size, a, r > 0 define the
eigen-decay rates of the kernel and target function, b > 0 controls the decay
rate of the ridge regularization parameter , 02 = E [€?] is the noise level and
source coefficient s defined in Assumptions (PE) and (EE). Here

= min{s,2}. Results in blue indicate either previously unstudied regimes or
improvements in available rates in a studied regime.
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Qur result on B

A Novel Bound on the Bias term

Previous result on B
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Figure: Phase diagram of the bound of the bias term B under weak ridge and
polynomial eigen-decay. Our result is on the left, which improves over previous
result from [1] on the right. On the left plot, the range of the source coefficient

2r+a . . .
12 is shown in gray font in each colored region.
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Catastrophic Overfitting with (EE)

Gaussian Kernel Ridgeless Regression
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Figure: It is well known that kernels with exponential eigen-decay suffers from
catastrophic overfitting.
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Catastrophic/tempered Overfitting with (PE)

Overfitting of NTK with L=1 Overfitting of Laplacian kernel
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Figure: Kernels with polynomial eigen-decay fitting pure noise on unit
2-disk. (left): Neural tangent kernel (with 1 hidden layer) exhibits catastrophic
overfitting. (right): Laplacian exhibits tempered overfitting.
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Gaussian Equivalence Property (GEP)

Previous literature [2]-[4] replace feature vectors by Gaussian random
vectors to obtain KRR learning curve, which agree with the empirical
results. This phenomenon is called GEP.

When and why does the Gaussian Equivalence Property (GEP) exist?
we provide the same non-asymptotic bounds for both cases under
a strong ridge. However, GEP does not hold under weak ridge!

10/21



Matching Lower Bound

Ridge strong weak
Feature (IF)  (GF) | (IF) (GF)
(when 1 <5 <2)
(PE) or (EE) Vv unknown X see Figure 4

Table: The table shows whether the lower bound is matching the upper bound
deduced in this paper.
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Master Inequalities

Using results from [1], [5]:

2,/2¢—1
B< <W>0 O Y S A N

Tr[Z>k22 WZ1 n(2)? )

Vit < vt (C & nTI32,] nRd(D)

o the “probably constant” part: random matrix theory

o the “decay” part: simple calculus
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Generic Feature

Let x € RP be the random feature vector with covariance ¥ = E [xxT}.
Let z = X71/2x be the whitened feature. Assumption (GF): for all

k € N, assume that

” >k||§:
def
= € f7>k =0

“ ¥ I lr[2>k] k( )

2 2
lz<kl? lzskls,, l2>kllxz,

kK TE] ) =2 k] = Ok (1).

def.
Bk = esssup max
z

2 2 2
llzs«ll 1> k152
ReaSOnZ Ez |:||Z<k||2:| — EZ |:Tj[szk>]k:| == Ez [ Tr[sz] - 1
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Implicit Regularization

Let X € R"*P be the input block. Recall the ridge regressor:

6 = XT(XXT +n\l,) "y e RP
A
Write X = (X§k|X>k) and
Ay
A =X XL+ X0 XD, + nAl,
<kR< DAl

v N I
fit target implicit reg.  explicit reg.
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Concentration Coefficients

Master inequalities:

1+ p?C¢ " +p - —1y51( Ak
B (P s, + @2+ ) o
_ k TF[Z>k22 Z ] I’k( )2

2 o 2 e2e1 kE>k
Viemsp (CE n nTr[22,]  nR(2)
Concentration Coefficients:

w (2L Z<k) w SUZLZ<k) wr M1E> ko, +51(Ak)
mk n , mk Sk(Z;kZSk) ' Pk Sn(Ak)

where Z<k = X<k2_1/2 R"Xk.
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Concentration Coefficients

def. 51(Z<kZ<k)

Let k € N be an integer. Recall that &, x = -

(GF) (or resp. (IF)) holds, then with probability at Ieast

1-— 2exp(—ﬁn) (or resp. 1 — 2exp (—c1kn)), it holds that
k

. If Assumption

l\)\b—l

gnkZ

Proof:
Since the largest singular value is larger than the average of the singular
values,

def 51(Z<kz<k) > %Tr[Z-'S_kZSk] . T"[Z—grkzﬁk]

Snk = n - n - kn
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Concentration Coefficients

If Assumption (GF) holds, then
Tr[Z kZ<k] = TI‘[Z<kZ Z || <kH2 < ﬁkkn

Set M = Bk and by Hoeffding's inequality, the above trace concentrates:

2 2
(’Tr[z<kz k] — kn| > t) < 2exp(_#)

Set t = nk/2 to conclude the statement.
Analogously, if Assumption (IF) holds, for i=1,..,nand I =1,... k,
(z,.(l))2 — 1 is centered sub-exponential variable with sub-exponential norm

H(z,.(’))2 . G2 With probability at least 1~ 2exp (~ckn),
1
n k 0 1
\2
I Tr[ZL,Z<i] — kn| = ;;(z, )P — kn| < Skn.
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