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1. Distributed Stochastic Optimization Problem

Our objective is to address the nonconvex distributed optimization problem:

# model parametes /

i () 2 £i(@)

workers

Loss on local data D; stored on device ¢

fZ(Z) = E¢ap, [fz(l‘,tf)]
2. Homogeneous Setting

features

Homogeneous Setting: all workers store the same data,

D;=Dand f; = f for all i € [n]

3. Decentralized Setup with
Communication and Computations Times

i.e.,

# devices /

We have n nodes with the associated computation times {h; }, and communications times {p;_, } :

(i) It takes less or equal to h; € [0, c0] seconds to compute a stochastic gradient by the i" node.

(i) less or equal p;_,; € [0, o] seconds to send directly a vector v € R¢ from the i node to the j®

node

Communication Takes Time
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For this setup, it would be co

Computation Takes Time

Let us define an auxiliary function called equilibrium time:
Definition 2 (Equilibrium Time). A mapping t* : R>q X Rgo X ]Rgo — R with inputs s (scalar),
[hi]7, (vector), and [7;]7; (vector) is called the equilibrium time if it is defined as follows. Find a
permutation 7 that sorts max{7;, h;} as max{7r,, hr, } < --+ < max{7x,, hr, }. Then the mapping

returns the value
k -1
= min max { max{7r,, hr,},$ (Z ,%) € [0, 00].
k€(n] =17

(s, [hilizy, [7]
Summary of the results:

Table 1: Homogeneous Case (1). The time complexities to get an e-stationary point in the nonconvex
setting. We assume that 7;_,; = 7;_,; for all i,j € [n] in this table. Abbr.: o? is defined as

E¢[|V£(2;€) — Vf(2)||?] < o2 forall z € RY, L is a smoothness constant of f, A := f(2°) — f*
Method The Worst-Case Time Complexity Guarantees Comment
2 Suboptimal since, for instance, it
Minibatch SGD max{ max Tioj, ma hi } (g + *r"ng"“‘) “linearly”® depends on max hi
SWIFT @ ‘Suboptimal since, or insiance, i
(Bornstein et al., 2023) linearly”"®’ depends on b7 hi
Asynchronous SGD ® Suboptimal, for instance,
(Even et al., 2024) - evenif 7i,; = 0Vi,j € [n]
(Z’zfl‘)'ﬁ fr‘y;?) E2 min ¢°(/e, [hili, [riss i) Optimal up to log n factor
Lower Bound o2 »
(Theorem 1) o mmt (/es [haliys [rims )7 —

 The mapping ¢* is defined in Definition 2.

® It not trivial to infer the time complexities for these methods. However, in Section 5.4, we discuss some cases where it is
transparent that the obtained results are suboptimal.

© Meaning that the corresponding time complexity — 00 if max; ¢ () hi — co.

Lower Bound
‘We analyze virtually all possible decentralized methods,
including gossip algorithms, asynchronous and centralized methods

Protocol 1 Virtually All Decentralized Methods

1: Init S; = 0 (all available information) on worker i for all i € [n]
Run the following two loops in each worker in parallel

while True do

(takes 0 seconds)
£~ D (takes h; seconds)
(atomic operation, takes 0 seconds)

Calculate a new point zf based on S;
Calculate a stochastic gradient V f(z¥; €) (or V fi(z¥; €))
Atomic add V f(¥; €) (or V fi(z¥;€)) to S;

end while
while True do

to define the d

worker j :

> pusv 0,00

(u,v)Epath

Tij = min
) pathe P; _, ;

4. Assumptions

of the shortest path from worker i to
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Send® any vector from R? based on S; to any worker j and go to the next step of this loop
without waiting (takes 7;,; seconds to send; worker j adds this vector to S;)
10: end while

(a): When we prove the lower bounds, we allow algorithms to send as many vectors as they want in parallel
from worker i to worker j for all i # j € [n].

Theorem 1 (Informal Lower Bound). Consider Protocol 1. It is impossible to design a method that
converges faster than

@ (igber 2 min e s bl

seconds.

‘We work with the following standard assumption from smooth nonconvex stochastic optimization

literature.

A .

1. f is differentiable and L-smooth, i.e., |V f(z)

Assumption 2. There exist f* € R such that f(z) > f* for all x € R%.

Assumption 3. For all x € RY, stochastic gradients V f (:c,{) are unbiased and o*-variance-
2] < o2, where 62 > 0. We
ation times are statistically mdependent of stochastic

bounded,

also assume that comp

gradients.

ie, B[V f(z;€)] = Vf(%) and Be[||V f(x;€) — Vf(z)

5. Goal
‘We want to find a stationary point of the optimization problem:
Find a (possibly random) vector € R? such that

E[IV/@)’]

— Vi@l < Lllz -yl Ve,y € R%

The lower problem reduces to the analysis of the concentration of the time series y” := minje[n) qJT
and y7 := minie( {y/ " + hinl +7is;}, where 3) = 0 forall i € [n], and {nF} are iid.
geometric random variables. This analysis is not trivial due to the min,¢ ) operations and requires
new proof techniques.

Fragile SGD

The formal description of Fragile SGD is presented in the paper. The idea is pretty simple. All
workers do three JOhS in parallel: calculate stochastic gradients, receive vectors, and send
vectors through spanning trem A plvnt worker aggregates all stochastic gradients in ¢* and, at
some moment, does "1 = zF
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Figure 1: Node 1 is a pivot worker.

For instance, once the first parallel process of
worker 3 finishes a calculation of a stochastic
gradient, it aggregates it locally to the buffer
vector and then immediately starts calculating
anew stochastic gradient. Another parallel
process of worker 3 takes the buffer vector
and sends it to worker 2. Worker 2, while
also calculating a stochastic gradient, receives
the buffer vector and aggregates to its buffer
vector, which it will send worker 1 once the
communication channel is available.
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7. Heterogeneous Setting :
Optimal Amelie SGD Method and Lower Bound

Heterogeneous Setting: all workers store different data,

i.e., D; and f; are different

Summary of the results:

Table 2: Heterogeneous Case (13). Time complexities to get an e-stationary point in the nonconvex
setting. Abbr.: o? is defined as E¢[||V fi(z;€) — Vfi(2)||?] < o? forallz € R%,i € [n], Lisa
smoothness constant of f = L 37" | fi) A= f(a0) — f*.

The Worst-Case Time Complexity Guarantees

&max{(wrm)

max L;A 9
S i€l " 2

= g ne

Method Comment

Minibatch SGD max{ mex Tiog, max hi }} suboptimal if @2/« is large

€ln] €ln]

requires local L;-smooth. of f;,
suboptimal if =2/« is large
(evenif max;¢(n) Li = L)

RelaySGD, Gradient Tracking
(Vogels et al., 2021)
(Liu et al., 2024)

max h;
i€[n]

Asynchronous SGD
(Even et al., 2024)

requires similarity of the functions { f;},
requires local L ;-smooth. of f;

Amelie SGD and Lower Bound 1o

(Thm. 7 and Cor. 2) g Optimal up to a constant factor

w5

Amelie SGD is closely related to Fragile SGD but with essential algorithmic changes to make it work
with heterogeneous functions.

8. Example in the Homogeneous Setting: Line

max{‘ma Ti—j, max hi, 2
i,j€(n] i€(n]

Figure 4: Line with piy1; = pisit1 = pforall i € [n — 1], piy; = oo otherwise. For all

i# j € [n], edges i — j and j — i are merged and visualized with one undirected edge.

Let us consider Line graphs where we can get more explicit and interpretable formulas. Surprisingly,
even in some simple cases like Line or Star graphs, as far as we know, we provide new time complexity
results and insights. We can show that the optimal time complexity (up to logarithmic factors) for
Line graphs in the homogeneous setting is

o*fe, if /o*h/ep < 1,
Ve, ifn > /e > 1,
*h/ne, if /*hfep > n
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seconds. There are three time complexity regimes:

 slow communication, i.e., /7 h/cp < 1, this inequality means that p is so large, that
communication between workers will not increase the convergence speed, and the best
strategy is to work with only one worker!

« medium communication, i.e., n > 1/o°#/c» > 1, more than one worker will participate in
the optimization process; however, not all of them!, some workers will not contribute since
their distances 7;. . to the pivot worker j* are large

* fast communication, i.e., \/azh/l;p > n, all n workers will participate in optimization
because p is small.

9. Experiments
We focus on highlighting the results from the logistic regression experiments:
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On MNIST dataset (LeCun et al., 2010) with 100 workers, Fragile SGD is much
faster and has better test accuracy than Minibatch SGD.



