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• Plasticity: Ability of the model to adapt to new information 

• Plasticity loss is often observed in Reinforcement Learning and 
Continual Learning, where the data distribution is non-stationary.
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Figures from Abbas et al., (2023), Dohare et al., (2023)

Under Non-Stationary Data Distribution



Plasticity of Neural Networks

Figure from Ash & Adams, (2020)

Under Stationary Data Distribution

• Surprisingly, models pre-trained on a portion of a dataset and then 
trained on the full dataset (warm-start) tend to generalize worse 
than models trained from scratch on the full dataset (cold-start).
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Warm-Starting vs. Cold-Starting
Theoretical Framework

Image data consists of label dependent features and label independent noises

Features: ears, eyes, mouth,  
Noises: grass, sky, 

…
…

Theoretical Results (Informal)
• When warm-starting, the model cannot learn many features due to noise memorization and 

achieves poor generalization performance. 

• When cold-starting, the model forgets the memorized noise, allowing it to learn more features, 
but it requires longer training time.

• If the model can retain the learned features while forgetting the memorized noise (ideal method), 
it can learn more features while converging faster compared to cold-starting.



DASH: Direction-Aware SHrinking
Q. How can this ideal method can be implemented in real-world neural net training?

• When new train data  comes in, DASH calculates negative 
gradient of the loss calculated with train data 


• Then, shrink the weights proportionally to the cosine similarity 
between the current weight  and 

𝒯j
𝒯1:j

θ −∇θ L

• Neurons that learned features:

- Show high cosine similarity with new data's negative gradient
- Are retained by not shrinking, preserving learned features

• Neurons that memorized noise:
- Show low cosine similarity with new data's negative gradient
- Are shrunk to forget memorized noise, and this effectively redirects the 

weight towards feature learning



Experimental Results


