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Prompts and Automatic Prompt Optimization (APO)

Prompts consist of 
instruction(s) (i.e., to teach) and, 
if any, exemplars (or 
demonstrations) (i.e., to show)

Automatic prompt 
optimization (APO) frames 
prompt engineering as 
optimization A labeled validation set is 

typically required



Exemplar Optimization (EO)

- Targets exemplars.
- Arguably how APO started (before instruction-following 

models)!
- Approaches:

- Heuristic-based: similarity (retrieval), calibration / 
entropy, diversity…

- Optimization-based: influence function, sensitivity, 
learning-based (learning a retriever or selection 
based on validation performance (e.g., DSPy)



Instruction Optimization (IO)

- Targets instructions.
- More popular recently.
- Typically uses another LLM to rewrite instructions in a human-readable 

format based on paraphrasing instructions and/or the 
meta-instructions, reflecting on errors, or both.

- Approaches:
- Paraphrasing-based: APE, EvoPrompt, InstructZero, 

PromptBreeder…
- Reflection-based: ProTeGi, PromptAgent
- Implicit: OPRO

*Google papers.



Research Questions
IO and EO address the same overarching problem 

but have evolved rather independently:

● Many EO approaches predate instruction 
tuning, so there are minimal instruction 
optimization.

● IO approaches require labeled dataset, but only 
use them to evaluate a validation score and 
then use random exemplars / no exemplars at 
all
○ Why? Because authors would like to do 

one thing at a time
● Relative dearth of works targeting both. (Pryzant et al, 2023)



Research Questions 

Practically, we cannot simply isolate them since they are interdependent.

This study aims to answer:

- What is the relative importance and performance impact of EO and IO, both in 

isolation and when combined together?

- How do we make the optimal use of the limited data and computational budget 

under the current APO framework?



Experimental Setup
IO methods

- No IO: Let’s think step by step.
- APE: Optimizer LLM iteratively 

paraphrase the best performing 
instructions in the prev. Round

- ProTeGi: Optimizer LLM critique 
errors and revise instructions 
iteratively + beam search.

- PromptAgent: Similar to ProTeGi 
but uses MCTS.

- OPRO: Condition optimizer LLM 
with past trajectory of {instruction, 
scores} and implicitly ask the LLM 
to improve.

EO methods

Heuristic-based: 

- No EO: no exemplars.
- Random exemplars
- Nearest (embedding distance)
- Diversity
- All exemplars (Gemini 1.5)

Optimization-based:

- Random Search (DSPy)
- Mutation

All combinations (outer product)



Models & Data

Models {target model / optimizer 
model }

- PaLM 2 (text-bison-002) / PaLM 
2 (text-unicorn-001)

- Gemini 1.0 Pro / Gemini 1.0 
Ultra

- Gemini 1.5 Flash / Gemini 1.5 
Pro

Data

- BIG-Bench Hard (collection of 
26 tasks: numerical reasoning, 
commonsense problem-solving, 
logical deduction, linguistic 
manipulation, machine 
translation, and tabular 
reasoning,...

- MMLU



Main Results



Insight 1: Free exemplars are no-brainers for performance 
improvements

- Any EO improves, with any IO, or no IO
- This may not seem surprising but…

1. Exemplars in this case are self-generated (“reinforced ICL”) and come 
from the validation set -> No additional data annotation cost.

2. Existing works often focus on “zero-shot” (i.e., No EO), but it may 
neither reflect nor predict LLM performance with better exemplar 
selection.

Second best in “zero-shot”... Worst with better exemplars…



Insight 1: Free exemplars are no-brainers for performance 
improvements



Insight 2: In many cases, EO > IO

In isolation: Gain from 
EO > Gain from IO

In combination: 
improvements stack up, 
but mostly attributable 
to better exemplars.

PaLM 2 (text-bison-002)

Gemini 1.5 Flash

Simply scaling # shots is not 
necessarily the best



Insight 2: In many cases, EO > IO
“Let’s think step by step.” + exemplars from 32x random search > SoTA instruction 
optimization + random exemplars 😲

max(...) = 70.81 < 71.16

Aggregated

Task-wise



Insight 3: Combining IO and EO

Combining IO and ES 
is greater than the 
sum of its parts under 
similar computational 
budgets.

Joint instruction and 
exemplar 
optimization also 
powers the Vertex AI 
Prompt Optimizer!

Similar performance, but green 
boxes are ~2x more expensive 
than the red boxes (optimal 
allocation of IO / ES)



Vertex AI Prompt Optimizer: Now Publicly Available
Performs optimization on instructions and demonstrations of any 
Vertex AI Model. Currently available as a Public Preview product.

Iterative optimization process. Key components:

- Labeled data: a small number of labeled data for validation 
and as the source for selection of few-shot demonstrations

- Optimizer model: An LLM used to propose modified instruction 
candidates

- Evaluator model: An LLM for evaluating the prompts 
(instructions + demonstrations) on a user-defined evaluation 
metric.

Link to our Google Cloud Blog 

https://cloud.google.com/blog/products/ai-machine-learning/announcing-vertex-ai-prompt-optimizer


Conclusion
Systematically evaluate instructions and 
exemplars in APO

1. Intelligently incorporating exemplars 
generated by the target model itself 
significantly and consistently 
improves performance

2. The performance gains realized by 
choosing appropriate exemplars 
can eclipse the improvements 
brought by SoTA instruction 
optimization. 

3. Optimally mixing-and-matching IO 
and ES is greater than the sum of its 
parts

4. SoTA IO might already be itself 
implicitly relying on exemplars
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