
Teach Better or Show Smarter? On Instructions and
Exemplars in Automatic Prompt Optimization.
Xingchen Wan, Ruoxi Sun, Hootan Nakhost, Sercan Ö. Arık

NeurIPS 24 (paper)

https://xingchen.one/publication/prompt_optimizer/
https://xingchen.one/publication/prompt_optimizer/
https://arxiv.org/pdf/2406.15708v2

Prompts and Automatic Prompt Optimization (APO)

Prompts consist of
instruction(s) (i.e., to teach) and,
if any, exemplars (or
demonstrations) (i.e., to show)

Automatic prompt
optimization (APO) frames
prompt engineering as
optimization A labeled validation set is

typically required

Exemplar Optimization (EO)

- Targets exemplars.
- Arguably how APO started (before instruction-following

models)!
- Approaches:

- Heuristic-based: similarity (retrieval), calibration /
entropy, diversity…

- Optimization-based: influence function, sensitivity,
learning-based (learning a retriever or selection
based on validation performance (e.g., DSPy)

Instruction Optimization (IO)

- Targets instructions.
- More popular recently.
- Typically uses another LLM to rewrite instructions in a human-readable

format based on paraphrasing instructions and/or the
meta-instructions, reflecting on errors, or both.

- Approaches:
- Paraphrasing-based: APE, EvoPrompt, InstructZero,

PromptBreeder…
- Reflection-based: ProTeGi, PromptAgent
- Implicit: OPRO

*Google papers.

Research Questions
IO and EO address the same overarching problem

but have evolved rather independently:

● Many EO approaches predate instruction
tuning, so there are minimal instruction
optimization.

● IO approaches require labeled dataset, but only
use them to evaluate a validation score and
then use random exemplars / no exemplars at
all
○ Why? Because authors would like to do

one thing at a time
● Relative dearth of works targeting both. (Pryzant et al, 2023)

Research Questions

Practically, we cannot simply isolate them since they are interdependent.

This study aims to answer:

- What is the relative importance and performance impact of EO and IO, both in

isolation and when combined together?

- How do we make the optimal use of the limited data and computational budget

under the current APO framework?

Experimental Setup
IO methods

- No IO: Let’s think step by step.
- APE: Optimizer LLM iteratively

paraphrase the best performing
instructions in the prev. Round

- ProTeGi: Optimizer LLM critique
errors and revise instructions
iteratively + beam search.

- PromptAgent: Similar to ProTeGi
but uses MCTS.

- OPRO: Condition optimizer LLM
with past trajectory of {instruction,
scores} and implicitly ask the LLM
to improve.

EO methods

Heuristic-based:

- No EO: no exemplars.
- Random exemplars
- Nearest (embedding distance)
- Diversity
- All exemplars (Gemini 1.5)

Optimization-based:

- Random Search (DSPy)
- Mutation

All combinations (outer product)

Models & Data

Models {target model / optimizer
model }

- PaLM 2 (text-bison-002) / PaLM
2 (text-unicorn-001)

- Gemini 1.0 Pro / Gemini 1.0
Ultra

- Gemini 1.5 Flash / Gemini 1.5
Pro

Data

- BIG-Bench Hard (collection of
26 tasks: numerical reasoning,
commonsense problem-solving,
logical deduction, linguistic
manipulation, machine
translation, and tabular
reasoning,...

- MMLU

Main Results

Insight 1: Free exemplars are no-brainers for performance
improvements

- Any EO improves, with any IO, or no IO
- This may not seem surprising but…

1. Exemplars in this case are self-generated (“reinforced ICL”) and come
from the validation set -> No additional data annotation cost.

2. Existing works often focus on “zero-shot” (i.e., No EO), but it may
neither reflect nor predict LLM performance with better exemplar
selection.

Second best in “zero-shot”... Worst with better exemplars…

Insight 1: Free exemplars are no-brainers for performance
improvements

Insight 2: In many cases, EO > IO

In isolation: Gain from
EO > Gain from IO

In combination:
improvements stack up,
but mostly attributable
to better exemplars.

PaLM 2 (text-bison-002)

Gemini 1.5 Flash

Simply scaling # shots is not
necessarily the best

Insight 2: In many cases, EO > IO
“Let’s think step by step.” + exemplars from 32x random search > SoTA instruction
optimization + random exemplars 😲

max(...) = 70.81 < 71.16

Aggregated

Task-wise

Insight 3: Combining IO and EO

Combining IO and ES
is greater than the
sum of its parts under
similar computational
budgets.

Joint instruction and
exemplar
optimization also
powers the Vertex AI
Prompt Optimizer!

Similar performance, but green
boxes are ~2x more expensive
than the red boxes (optimal
allocation of IO / ES)

Vertex AI Prompt Optimizer: Now Publicly Available
Performs optimization on instructions and demonstrations of any
Vertex AI Model. Currently available as a Public Preview product.

Iterative optimization process. Key components:

- Labeled data: a small number of labeled data for validation
and as the source for selection of few-shot demonstrations

- Optimizer model: An LLM used to propose modified instruction
candidates

- Evaluator model: An LLM for evaluating the prompts
(instructions + demonstrations) on a user-defined evaluation
metric.

Link to our Google Cloud Blog

https://cloud.google.com/blog/products/ai-machine-learning/announcing-vertex-ai-prompt-optimizer

Conclusion
Systematically evaluate instructions and
exemplars in APO

1. Intelligently incorporating exemplars
generated by the target model itself
significantly and consistently
improves performance

2. The performance gains realized by
choosing appropriate exemplars
can eclipse the improvements
brought by SoTA instruction
optimization.

3. Optimally mixing-and-matching IO
and ES is greater than the sum of its
parts

4. SoTA IO might already be itself
implicitly relying on exemplars

Our poster session
Date and Time: Fri 13 Dec (11 a.m.
PST - 2 p.m.) PST
Venue: West Ballroom A-D #7000

