a

Teach Better or Show Smarter? On Instructions and

Exemplars in Automatic Prompt Optimization.
Xingchen Wan, Ruoxi Sun, Hootan Nakhost, Sercan O. Arik

NeurlPS 24 (paper)

Google Cloud

https://xingchen.one/publication/prompt_optimizer/
https://xingchen.one/publication/prompt_optimizer/
https://arxiv.org/pdf/2406.15708v2

Prompts and Automatic Prompt Optimization (APO)

Prompts consist of

instruction(s) (i.e., to teach) and, P(CL"> = E, €1y ..., €L, ZIZ]

if any, (or

demonstrations) (i.e., to show)

Automatic prompt P* (3:) — arg Pr{.l)z}z%? E(Jﬁ,y)""Dval |:g (fLLM (P([I}))) y)i|)
optimization (APO) frames

prompt engineering as

optimization A labeled validation set is

typically required

Exemplar Optimization (EO)

- Targets exemplars.
- Arguably how APO started (before instruction-following
models)!
- Approaches:
- Heuristic-based: similarity (retrieval), calibration /
entropy, diversity...
- Optimization-based: influence function, sensitivity,
learning-based (learning a retriever or selection
based on validation performance (e.g., DSPy)

Instruction Optimization (10)

- Targets instructions.

- More popular recently.

- Typically uses another LLM to rewrite instructions in a human-readable
format based on paraphrasing instructions and/or the
meta-instructions, reflecting on errors, or both.

- Approaches

Paraphrasing-based: APE, EvoPrompt, InstructZero,
PromptBreeder...

- Reflection-based: ProTeGi, PromptAgent

- Implicit: OPRO

*Google papers.

Research Questions

|0 and EO address the same overarching problem

but have evolved rather independently:

Many EO approaches predate instruction
tuning, so there are minimal instruction
optimization.
|0 approaches require labeled dataset, but only
use them to evaluate a validation score and
then use random exemplars / no exemplars at
all

o Why? Because authors would like to do

one thing at a time

Relative dearth of works targeting both.

likelihoods at the time of writing.

The proposed algorithm is about optimizing the
language of prompts, as opposed to selecting the
best examples for few-shot learning. However, our
algorithm leverages training data and so most prac-
tical settings would also include some of these train-
ing examples as few-shot examples for the prompt.
Accordingly, all of the experiments of Section 3.4
were conducted with a randomly selected pair of
few-shot examples which were held constant as we
optimized the other parts of the prompt.

(Pryzant et al, 2023)

Research Questions

Practically, we cannot simply isolate them since they are interdependent.
This study aims to answer:
- What is the relative importance and performance impact of EO and 10, both in
and when combined together?
- How do we make the optimal use of the limited data and computational budget

under the current APO framework?

Experimental Setup

10 methods

- No lO: Let’s think step by step. Heuristic-based:

- APE: Optimizer LLM iteratively
paraphrase the best performing - NoEO:no exemp|ars.
instructions in the prev. Round - Random exemplars

- ProTeGi: Optimizer LLM critique - Nearest (embedding distance)
errors and revise instructions - Diversity
iteratively + beam search. - All exemplars (Gemini 1.5)

- PromptAgent: Similar to ProTeGi
but uses MCTS.

Optimization-b d:
- OPRO: Condition optimizer LLM ptimization-base

with past trajectory of {instruction,
scores} and implicitly ask the LLM
to improve.

Random Search (DSPy)
- Mutation

All combinations (outer product)

Models & Data

Models {target model / optimizer
model }

- PalLM 2 (text-bison-002) / PaLM
2 (text-unicorn-001)

- Gemini 1.0 Pro/ Gemini 1.0
Ultra

- Gemini 1.5 Flash / Gemini 1.5
Pro

Data

BIG-Bench Hard (collection of
26 tasks: numerical reasoning,
commonsense problem-solving,
logical deduction, linguistic
manipulation, machine
translation, and tabular
reasoning,...

MMLU

Main Results

Table 1: Average BBH accuracy of all ES-IO combinations with PaLM 2 (text-bison-002)
target model and PaLM 2 (text-unicorn-001) optimizer model. The last row/column show
the max improvement over the No IO and/or No ES baseline of the respective row/column. The
background shades indicate cost in terms of # prompt evaluations on D, by the target model:
gray cells requires no evaluation on D, (m = 0) ; blue cells perform m = 32 evaluations to
iteratively optimize instructions or exemplars; orange cells iteratively optimize exemplars m times
on top of optimized instructions.

Exemplar Selection (ES) Max A

No ES Random Nearest Diversity R.S. Mutation over No ES
& No 10 60.30 66.91 66.09 66.74 71.16 72.92 +12.63
S & a APE 64.96 69.11 69.01 70.81 75.88 76.25 +11.28
g'g= ProTeGi 68.13 70.81 70.01 69.25 75.90 77.29 +9.16
28 g PromptAgent 65.66 67.65 67.82 67.35 72.51 72.77 +7.11
S0 = OPRO 63.04 68.50 68.33 67.57 73.02 73.06 +10.01

Max A over No I0 +7.83 +3.89 +3.92 +4.07 +4.74 +4.37 =

Table 2: Average BBH accuracy of seed instruction (No 10)
and ProTeGi (best IO strategy from Table 1) with different Table 4: Average BBH accuracy of seed instruction (No 10), APE and ProTeGi (top 2 IO strategies
ES strate gi es usin g Gemini 1.0 Pro tar get mo del and Gem- from Table 1) with different ES strategies using Gemini 1.5 Flash target model and Gemini 1.5 Pro

S - 4 optimizer model. Refer to Table | for further explanations.
ini 1.0 Ultra optimizer model. Refer to Table | for further

exp]anation& Exemplar Selection (ES) A
No ES Random Nearest Diversity All R.S. Mutation ES
Exemplar Selection (ES) _ a NolO 7507 8002 8171 8152 8043 8325 8242 +8.18
No ES Random Nearest Diversity R.S. Mutation ES APE 7752 81.20 8371 81.55 R1D0W 8504 8476 +7.54
N() IO 6314 7112 69[9 6782 7577 7577 +126j ProTeGi 80.39 82.40 82.61 82.29 83.52 84.47 84.49 +4.10
ProTeGi 6591 7292 72.13 72.64 78.27 79.01 +13.10 AIO +5.32 +2.20 +2.00 +0.77 +3.09 +1.79 +2.34 -
A IO +2.77 +1.60 +2.94 +4.83 +2.50 +2.52 -

Google Cloud

Insight 1: Free exemplars are no-brainers for performance
improvements

- Any EO improves, with any IO, or no IO
- This may not seem surprising but...
1. Exemplars in this case are self-generated (“reinforced ICL") and come
from the validation set -> No additional data annotation cost.
2. Existing works often focus on “zero-shot” (i.e., No EO), but it may
neither reflect nor predict LLM performance with better exemplar

selection.
(T~ "vs7 " " Exemplar Selection (ES) ~ T T 7 S, MaxA
1 NoES ||' Random Nearest Diversity R.S. Mutation| over No ES
- No 10 | 60.30 | 6691 66.09 6674 71.16 72.92 | +12.63
S &~ APE | 64.96 11 69.11 69.01 7081 7588 7625 | +11.28
SES ProTeGi . 68.13 1" 70.81 70.01 6925 7590 7729 |, +9.16
52 = [PromptAgent | 6566 || 6765 6782 6735 7251 [7277]1 +7.11
£0 2 OPRO | 63.04 1 6850 6833 67.57 73.02 73[06 1| +10.01
Max A overNo 10 |\ +7.83 |\ +3.89 +3.92 +4.07 +474 +437, —

Second best in “zero-shot”... Worst with better exemplars...

Insight 1: Free exemplars are no-brainers for performance

[]
Improvements
0 10 Jm
25 25 APE
20- |- 20
-J/.;
5 %
2 151 2 151
T Z +32%
,f_% +28% E +30%
10 : 3-3,3/é°;¢, 10 +28%
51 51 -
+26%
+24% 037‘7;‘
T T : T 0 r : :
25 50 75 100 25 50 75 100

Test accuracy (%)

Test accuracy (%)

Task index

25 PraT >

20-

+40%
W +30%
+27%
77.3

25

50 75 100

Test accuracy (%)

Figure 3: Appropriate ES improves over any or no 10: Task-specific BBH performance with no
instruction optimization (left) and with SoTA 10: APE (middle) and ProTeGi (right) before and after
applying exemplars found via Mutation (§3.1) on PaLM 2. Dashed and solid lines denote the average
performance before and after exemplars, respectively. 7ask index is determined by the ascending
order of test accuracy under seed instruction. Refer to additional visualization in App. B.3.

Google Cloud

Insight 2: In many cases, EO > 10

In isolation:
> Gain from IO

In combination:
improvements stack up,
but mostly attributable
to better exemplars.

PaLM 2 (text-bison-002)

Exemplar Selection (ES) Max A
No ES Random Nearest Diversity R.S. Mutation over No ES
& No 10 [6030 ' 6691 66.09 66.74 71.16 72.92 +12.63
) é,\ APE 1 6496 1 69.11 69.01 70.81 75.88 76.25 +11.28
S E % ProTeGi 1 68.13 1 70.81 70.01 69.25 75.90 77.29 +9.16
CAE g PromptAgent I 65.66 | 67.65 67.82 67.35 s 20 +7.11
SO = OPRO I 63.04 ! 68.50 68.33 67.57 73.02 73.06 +10.01
Max A over No 10 I\ +7.83 ; +3.89 +3.92 +4.07 +4.74 +4.37 -
Gemini 1.5 Flash
Exemplar Selection (ES) A
No ES Random Nearest Diversity All R.S. Mutation ES
Nolo F7507 \ 80.02 8171 8152 [80.43,(8325, 8242 +8.18
APE : 77527178120 ~ 8371 81,55 "1781.20 1 85.04 |, 84776 ~ +754
ProTeGil 80.39 ! 82.40 82.61 82.29 | 835218447 | 8449 +4.10
AIO V4532 , +220 4200 +0.77 (+3.09N\ +1.79V +2.34 -
—— — — —

T

Simply scaling # shots is not

necessarily the best

Google Cloud

Insight 2: In many cases, EO > 10

“Let’s think step by step.” + exemplars from 32x random search > SoTA instruction
optimization + random exemplars &9

Aggregated

Task-wise

10: = NolO APE mmm ProTeGi ES: No ES Random Mutation
_——— _———
tracking_shuffled tracking_shuffled - thmet i ction (7 i fallaci i
afests (5 obies 7} multistep_arithmetic logical_deduction ()! ormal_fallacies A logical_deduction (5)
g 60 50 0 .
® g 1
3 a0 N 5'0
N a0 W
“— 3 -—
racking_shuffle® Sa“em_‘faﬂs‘ﬂ‘m"\ web_of_lies (hyperbaton Ny mcvie_mmmmev}

80

Testacc.

(L] 1
N
Pl & 1

80
N
N 60
PN i & S

Exemplar Selection (ES)
Random Nearest Diversity R.S. Mutation e (T, | garent g r*ml.o—n;.ﬁgh.‘r[‘\ {mw-m?m_;\
No 10 6691 66.09 6674 \ 7116 | 7292 i I R M |
APE 69.11 69.01 7081 17588 76.25 B gé II“" w2 ag || 3 Eg |g0, N 55 I
ProTeGi 70.81 70.01 69.25 17590 77.29 - ! femmS Som = S
PromptAgent 67.65 67.82 67.35 1 7251 200 S'%I, szl i o . | qo|,]
OPRO 63.04 _ 6850 _ 6833 _ 6757 ! 73.02 73.06 £ : g [i% | i g ool s E I
T o B 7°|i*___i°$§g ol 2 g]
max(".) — 70.81 < . Iogwcal_deducnonlil)gorpmmm_m_ﬂ_aﬁ und:zg::ding 85 r Bkt \ {W
§ oo i P % L 1
§ 5 § 20 N Jeo § c 75 ¢ eia o § 1
”CSSSS" 'Uig , Lml § I SSE? .'§S§§ ’
[EEp—) S A N —

Figure 4: Task-specific BBH performance of selected IO-ES combinations with PaLM 2. Note
that 1) Proper ES almost uniformly improves performance and 2) With appropriate exemplars, seed
instructions with no optimization (third bar from the right) can often perform on par or better than
SoTA IO but with standard random exemplars or no exemplars commonly used in the literature (first
six bars in each figure). Refer to App. B.3 for visualizations with Gemini models.

-

Insight 3: Combining IO and EO

Combining 1O and ES
is greater than the
sum of its parts under
similar computational
budgets.

Joint instruction and
exemplar
optimization also
powers the Vertex Al
Prompt Optimizer!

multistep_arithmetic

001
—~ 801
&
19) 75
9 |
@
o]
>

object_counting

tracking_shuffled
objects (7)

snarks

PaLM 2 (text-bison-002)

Gemini 1.5 Flash

6 # lterations 3'2 O # lterations 3'2 O # Iterations 3'2 O # lterations 3'2

Eval. budget m 32 r _| r6éT| Eval. budget m r32_| r67|
10 Budget mio 32 24 16 1 8] 0o 132] 10 Budget mio 32 24 116 8 0o 132
ES Budget mgs 0 8 16 1 24 1 32 1 32 1 ES Budget mps 0 8 1 16 1 24 32 1 32 1
Avg. testacc. (%) T 70811 7326 74.49 176.14 7292 |76.25) Avg. testacc. (%) T 83.257 84.90 I85.17 84.82 83.71 |85
Avg. test rank | 4.50 3.63 344 L 2.88I 3.60 |2.94I Avg. test rank | 4.04 3.65 1 3.29I 3.00 358 1 i44l
- — - — - —

- -

Similar performance, but green
boxes are ~2x more expensive
than the red boxes (optimal
allocation of 10 / ES)

Google Cloud

Vertex Al Prompt Optimizer: Now Publicly Available

Google Cloud

ERTEN
(" conactsates) (2N
J

\

Performs optimization on instructions and demonstrations of any

Vertex Al Model. Currently available as a Public Preview product.
Iterative optimization process. Key components:

- Labeled data: a small number of labeled data for validation
and as the source for selection of few-shot demonstrations
- Optimizer model: An LLM used to propose modified instruction s

Security, Workspace, App
Dev, & more.

candidates
- Evaluator model: An LLM for evaluating the prompts
(instructions + demonstrations) on a user-defined evaluation

Vertex Al Prompt Optimizer

OPTIMIZER EVALUATOR

MODEL MODEL

Al & Machine Learning

Prompt Optimizer

September 26, 2024

Ivan Nardini

Announcing Public Preview of Vertex Al

Product Manager, Cloud Al Research Developer Relations Engineer

Prompt design and engineering stands out as one of the most approachable methods to drive
meaningful output from a Large Language Model (LLM). However, prompting large language
models can feel like navigating a complex maze. You must experiment with various combinations of
instructions and examples to achieve the desired output. Moreover, even if you find the ideal
prompt template, there is no guarantee that it will continue to deliver optimal results for a different

LLM

Migrating or translating prompts from one LLM to another is challenging because different
language models behave differently. Simply reusing prompts is ineffective, so users need an

intelligent prompt optimizer to generate useful outputs.

To help mitigate the “prompt fatigue" experienced by users while they build LLM-based

applications, we are announcing Vertex Al Prompt Optimizer in Public Preview.

What is Vertex Al Prompt Optimizer?

Vertex Al Prompt Optimizer helps you find the best prompt (instruction and demonstrations) for
any preferred model on Vertex Al. Itis based on Google Research’s publication (accepted by
NeurlPS 2024) on automatic prompt optimization (APO) methods, and employs an iterative LLM-
based optimization algorithm where the optimizer model [responsible for generating paraphrased
instructions] and evaluator model [responsible for evaluating the selected instruction and
demonstration] work together to generate and evaluate candidate prompts. Prompt Optimizer
selects the best ir and based on the evaluation metrics
the user wants to optimize against. Instructions include the system instruction, context, and task of
your prompt template. Demonstrations are the few-shot examples you provide in your prompt to

elicit a specific style or tone from the model response.

With just a few labeled examples and configured optimization settings, Vertex Al Prompt Optimizer
finds the best prompt (instruction and demonstrations) for the target model and removes the need
for manually optimizing existing prompts every time for a new LLM. You can now easily craft a new
prompt for a particular task or translate a prompt from one model to another model on Vertex Al

Here are the key characteristics:

Link to our Google Cloud Blog

Google Cloud

https://cloud.google.com/blog/products/ai-machine-learning/announcing-vertex-ai-prompt-optimizer

Conclusion

Systematically evaluate instructions and _ Google
exem pl ars in AP O owfe Systepatical vanalyzoine rsl:s Teach Better or Show Smarter?

exemplar optimization (EO) in On Instructions and Exemplars in Automatic Prompt Optimization
automatic prompt optimization Xingchen Wan, Ruoxi Sun, Hootan Nakhost, Sercan O. Arik
coe

respondence to: fxingcherv, soank}@googh.cor

A tale of two automatic Setup

prompt optimizers We first perform thorough experiments using popular I0 & EO methods individually and in combination:

1. Intelligently incorporating exemplars

- Large language models are powerful EO Techniques
but are sensitive to prompts, hence (No I0): “Let’s think step by step” « (No ES): No exemplars applied o PaLM 2 (text-bison)
necessitating prompt engineering. « APE: iteratively paraphrase the best » Random: randomly sample exemplars ~ » Gemini Pro 1.0 (gemini-1.
. - Automatic prompt optimization (APO) instruction. o Nearest: nearest exemplars basedon » Gemini Flash 1.5 (gen
generate Y the targ et model itself e st s procete. « ProTea sampl ncorect Spbetig *Craaer
- Prompts typically consist of predictions, critique, update, repeat. Diversity: centroid exemplars based
. .po . () and exemplars « PromptAgent: Similar to ProTeGi, but on embedding
(or equivalently, demonstrations) (to uses MCTS instead of beam search. All: Use all available exemplars. Datasets
sl g n I ca n y a n consl s en y show; « OPRO: Given {past prompt, Search / DSPy: iteratively search for e BIG-Bench-Hard (26 Tasks)
= performance}, ask an LLM to best set of exemplars on the © MMLU (57 tasks)

. " exemplar optimization (EO) are generate something better validation set
I m proves pe rfo rm a nce proposed to optimize each component.

Outer product

. . Key Takeaways What actually matters in Findings ———)
P A g 10 + EO outperforms either, even under
?
2. The pe rformance gains rea lized by T e prompt optimization? . Adeing exemplars almost the same compute
B - 10 and EO address the same underlying - always improve performance .
no-pbrainers;

° ° problem but have developed b on top of any 10, or no 10
Choos|ng approprlate exemplars P IO et S Eomplars (rput + SERESERY

i - Existing 10 papers use random H g rationale + output) are free
3.Combined I0-EO > the sum of exemplars or no exemplars at all; I side-products when we
1 its parts; - Existing EO papers often use = evaluate an instruction on the
can eclipse the - Standare, nom-opmized ot sen & rore o0
4.S0TA 10 may be optimizing

instructions. additional demonstrations.

exemplars inadvertently. o

1. How do EO and 10 interact with each Optimizing H SOTA 10 may be inadvertently doing EO!
other, and what is the relative z:ﬁ:‘:\;s may %o wn . e ;:TA K‘) r(‘rﬂv‘cts on wrong pmm‘c\m;\s, and may i
importance (in isolation / together)? welg G T A T jenerate texts similar to exemplars (quasi-exemplars;
Also powers the Vertex 2. How do we make optimal use of limited gptimizing % 88 8% Aa Ha) w1 - Wefind quasi-exemplars often to be keyin
Al Prompt Optimizer! data and compute between 10 and EO?] | to p ‘

3. Optimally mixing-and-matching 1O
and ES is greater than the sum of its .
parts Our poster session

4. SoTAIO might already be itself Date and Time: Fri 13 Dec (11 a.m.
implicitly relying on exemplars PST - 2 p.m.) PST
Venue: West Ballroom A-D #7000

Google Cloud

