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Object Goal Navigation (OGN)

Object Goal Navigation requires both exploring the environment and
identifying the semantic information of the scene to locate the
desired object.
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Object Goal Navigation (OGN)

Object Goal Navigation requires both exploring the environment and
identifying the semantic information of the scene to locate the
desired object.

Traditional OGN Approaches:
Perform well in trained environment

Zero-Shot OGN:

Able to navigate to unfamiliar objects in
unknown environments without
additional training.
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Fail to detect chair, -
explore selected frontier Pass by the target object, fail to find chair

Observation: Prior art relies the zero-shot detector for categorical information
understanding which often fall shot when only partial observation are given
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Pervious Method
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Fail to detect chair, ;
explore selected frontier Pass by the target object, fail to find chair

Observation: Prior art relies the zero-shot detector for categorical information
understanding which often fall shot when only partial observation are given

Motivation: Human identify distinctive geometric parts or affordance
attribute first when locating an object in an unfamiliar environment
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Fail to detect chair, .
explore selected frontier Pass by the target object, fail to find chair

Observation: Prior art relies the zero-shot detector for categorical information
understanding which often fall shot when only partial observation are given

Motivation: Human identify distinctive geometric parts or affordance
attribute first when locating an object in an unfamiliar environment

Our Solution: Multi-Scale Geometric Part and Affordance Map

Locate chair, move towards it

Attribute “chair back” has high  Attribute “chair leg “and “chair back” has
score: explore this area high score, persist in that direction
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Our Solution: Multi-ScaleGeometric Part and Affordance Map
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The first line of images shows our pro- posed method, where the multi-scale approach effectively captures objects at all
scales, such as the sofa back in the background. The second line of images shows the results of PIVOT-Liked GPT- 4V
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Armrest Backrest Seat

Gradient Based

Patch Based

GA score visualization between gradient-based and patch-based methods for the armrest, backrest, and seat
attributes of a target chair. The gradient-based method (top row) often attends to irrelevant areas, such as the
ceiling, while the patch- based method (bottom row) accurately focuses on the relevant areas
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Table a: The table illustrates the differences between our work and existing methods.

Method Mapping Multi-Scale Zero-shot Training
Locomotion Semantic

SemExp Categorical x X v v

ZSON Categorical X X v v

PixNav Categorical X v v X

VLFM Categorical X v v X

PONI Categorical X v X v

L3MVN Categorical x v x e

CoW Categorical X v X X

ESC Categorical X v P X

VoroNav Categorical X v X X

GAMap Affordance+Geometric v v X X
Method Reference Zero-shot Training HM3D Gibson

Locomotion Semantic SR SPL1t SRt SPLt

SemExp  NeurIPS 20 [2] X v v 379 18.8 65.2 33.6
ZSON NeurIPS 22 [26] X v v 25.5 12.6 31.3 12.0
PixNav ICRA 24 [11] X v X 379 20.5 - -
VLFM CoRL 23 [17] v v X 52.5 304 84.0 52.2
PONI CVPR 22 [20] X X v - - 73.6 41.0
FBE - v X v 23.7 12.3 41.7 214
L3MVN IROS 23 [21] v X v 50.4 23.1 76.1 37.7
Random - v X X 0.0 0.0 3.0 3.0
CoW CVPR 23 [30] v X X 32.0 18.1 - -
ESC ICML 23 [5] v X X 38.5 22.0 = -
SemUtil RSS 23 [16] v X X - - 69.3 40.5
VoroNav ICML 24 [18] v X X 42.0 26.0 - -
GAMap Proposed v X X 53.1 (126.4%)  26.0  85.7 (123.7%)  55.5 (137.0%)
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Figure 7: Visualized results of last observation frame, navigation path, and GAMap.
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Thank you!
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