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Treatment Effect Bias

TEB := | Exjao(r=1)[f(X)] = Eyjaor=1)[Y] | = | Ex|do(r=0)[f(X)] = Eyjao(r=0)[Y]
Interventional Bi;sr under Treatment Interventional B?iars under Control
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Contributions
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e Formulation challenges in (Factual) Estimation for Causal Downstream Tasks
o Potential mitigations
o Experimental evidence (synthetic and real-world data)

e [New Benchmark] ISTAnt*

—l

*first benchmark for Representation Learning for Causal Downstream Tasks
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Issue 1: Annotation Bias
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Unbiased supervision (i.e., annotation) is crucial to close
backdoor paths and avoid confounding effects
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Issue 2: Encoder Bias
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TERB

Prediction is not Causal Estimation. New methodologies to mitigate
the treatment effect bias during adaptation should be investigated.
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Issue 3: Discretization Bias

)
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Don't arbitrarily discretize predictions for downstream
treatment effect estimation.
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Reproducibility

Code: Data:

;é;-%:figshare

X )
https://doi.org/10.6084/m9.figshare.26484934.v2

https://github.com/CausalLearningAl/ISTAnt
https://github.com/CausalLearningAl/CausalMNIST
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https://doi.org/10.6084/m9.figshare.26484934.v2
https://github.com/CausalLearningAI/ISTAnt
https://github.com/CausalLearningAI/CausalMNIST
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