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Motivation

e large sets of training data from a single task are often lacking. Training data may stem from
diverse tasks with shared similarities, while test data come from entirely new tasks.

e The challenge is to rapidly adapt to these unseen tasks without the need to train from scratch.
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Problem Setup

Consider a supervised learning setting where each data point is denoted by z = (X, y) drawn
from some unknown distribution & over Z = 2 X %, where input space X, label space % .

A meta-learning algorithm & takes the meta-sample S as input and outputs an algorithm

dOS): (T XYY - H.

Goal: learn a useful prior over tasks to help with rapid adaptation to new tasks.

Transfer risk: L(<L(S), )=

D~

= gl (A (S)(S), D) =

D~

— S~

= gl (A (S)(S), 2).

Empirical multi-task risk: L(<Z(S), S) =%ZL(%(S)(5}), S =%Z%Zf(ﬂ(5)(é}), 2.
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Problem Setup

Task level learning: Given a meta-model (parameterized by meta-parameter w), the hope is that it
can be adapted easily to a new task & ~ u; in particular, a task-specific model u can be quickly

learned from a task-specific training set & ~ " of size n using the following proximal update:

u = arg min L(u, &) + —||u — w||?
uewW 2

Meta level learning: w itself is learned on the given meta-sample S = {oS}-}}Zl by minimizing a
regularized empirical loss averaged over tasks:

1 m
W = arg min — ) min [L(u, cS’j)+—Hu—wH2
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Proximal Meta Learning Algorithm

Algorithm 1 Prox Meta-Learning Algorithm A Algorithm 2 Task-specific Algorithm A,

Input: Meta-sample S ={S; }:'7’"' epochs 7', K, Input: Pretrained model w, training data S,

=1 _
step sizes 7, 7, regularization parameter A #repochs K, step size 7), reg. parameter A

1: wy = 0. 1: Option 1 (RERM): .
2: fort = 1,2, c e ,TdO 2: u(was):argminuEWL(ua S)+% ”U—WH
3: forj=1,...,mdo . .
4: U(Wt, S]) — -Atask(wta Sja K,n, /\) 3 ?pnogzl((z}D) S;{t' U(l)((\lv’ 8) -V

% Using Algorithm 2 4: for 7(51;1): Yo (;) 1 do
5:  end for noou (w,S)=u (‘Za S)
6: Calculate the gradient, V5 € [m/, —n(VLu® (w,S),S)

VFSj(U(Wt, Sj), Wt) — —A(U(Wt, S]) —Wt). +)‘(u(k) (Wa ‘S) _W))
7:  Updatew;, =w;— —%Z;n:lVng(u(wt,Sj),wt) 6: uFt(w,8) =TIy u*(w,S))

& wWii1 = I (w . end for
9- end tfz:. w(We+) 8: return Option 1 (RERM): u(w, S)

10: return @A,y (W41, -, K,n,\) Option2(GD):%Z,{;Iu(’“)(W,S)
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Uniform meta-stability

Definition: A meta-learning algorithm & is ﬁ_-uniformly meta-stable if for any neighboring meta-

samples S, SY), and neighboring samples &, S, for any task @ ~ p and any z ~ 9, we have
| £(A(S)S), z) — (A SONSV),z)| <P
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Uniform meta-stability

Definition: A meta-learning algorithm & is ﬁ_-uniformly meta-stable if for any neighboring meta-

samples S, SY), and neighboring samples &, S, for any task @ ~ p and any z ~ 9, we have
| £(A(S)S), z) — (A SONSV),z)| <P

Theorem: Consider a meta-learning problem for some M-bounded loss function £ and task

distribution i. For any ,B_-uniformly meta-stable learning algorithm &/, we have that with
probability at least 1 — 0,

L(A(S), ) S L(H(S),S) + flog(mn)log(1/8) + My/Tog(176)/(mn)



Bound Transfer Generalization Gap

Algorithm Loss Conditions Uniform meta-stability 3
Algo. 1 with RERM | convex, G-Lipschitz v < % /\G; | gf;
Algo. 1 with RERM | convex, H-smooth, M-bounded | v < % A>H /\(gn]‘f 7y )‘(Ifnﬁfl)
Algo. 1 with GD convex, G-Lipschitz, H-smooth | n < Hf2 Y < /\LT Gz | f;
Algo. 1 with GD | p-weakly convex, G-Lipschitz n< < < = =, A>2p GQf 7; .
Algo. 3 with GD p-weakly convex, G-Lipschitz n< % v< v+ AT, A>2p Gz\/_ G” } , w.h.p.

Table 1: Bounds on uniform meta-stabilityﬁ_ for different families of learning problems. Here, 77 is
the step-size for GD for task-specific learning, y is the step-size for GD for meta-parameter learning,
m is the number of tasks during training, n is the number of training data for the task at test time.

Extension Proximal Meta-Learning with Stochastic Optimization

Robust Adversarial Proximal Meta-Learning



Excess Transfer Risk

1 m
L(A(S)S), D) — L(ux, D) = L(A(S)(S), D) — — Z L(A(S)(S)), S))

\ — J >
Excess Transfer Risk &_. . () /

Generalization Gap &,. ()

gen

1 m
u. = arg min L(u, &) optimal task-specific T o Z L(A(S)(S)), S)) — L(U;k, S';)
uew

—
hypothesis for the unseen task; J

Optimization and Approvximation Error &

0pt+app(‘Q[ )

u’* = arg min L(u, cS’j) optimal task-specific
/ uEW + Lu*, &) — L(u:, §) + L(us, §) — L(us, D)
hypothesis for the given training tasks. J )

—~

.~

<0 [EVjE[m],§j~9}?,9j~ﬂ,9~M=O



Convex and smooth loss:

Setting = @(
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Convex and non-smooth loss:

Settingn = O (
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Excess Transfer Risk
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0° = — Z |W — u]?“H2 is the approximation error.
m

= [&aa( )] <0 (

K173

1

+—+—+—+ 410’
A/ K Am

1

Am

1

An

|
An

A
I

A

+—+—+—+ 1o’

I

), where

)



Thank you!



