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Motivation
• Large sets of training data from a single task are often lacking. Training data may stem from 

diverse tasks with shared similarities, while test data come from entirely new tasks.  

• The challenge is to rapidly adapt to these unseen tasks without the need to train from scratch.
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Problem Setup
• Consider a supervised learning setting where each data point is denoted by  drawn 

from some unknown distribution  over , where input space , label space . 

• A meta-learning algorithm  takes the meta-sample  as input and outputs an algorithm 
. 

• Goal: learn a useful prior over tasks to help with rapid adaptation to new tasks. 

• Transfer risk: . 

• Empirical multi-task risk: .
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Problem Setup
Task level learning: Given a meta-model (parameterized by meta-parameter ), the hope is that it 
can be adapted easily to a new task ; in particular, a task-specific model  can be quickly 
learned from a task-specific training set  of size  using the following proximal update: 

 

Meta level learning:  itself is learned on the given meta-sample  by minimizing a 
regularized empirical loss averaged over tasks:   
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Proximal Meta Learning Algorithm



Uniform meta-stability
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Uniform meta-stability
Definition: A meta-learning algorithm  is -uniformly meta-stable if for any neighboring meta-
samples , and neighboring samples , for any task  and any , we have 

𝒜 β̄
S, S( j) 𝒮, 𝒮(i) 𝒟 ∼ μ z ∼ 𝒟

|ℓ(𝒜(S)(𝒮), z) − ℓ(𝒜(S( j))(𝒮(i)), z) | ≤ β̄

Theorem: Consider a meta-learning problem for some -bounded loss function  and task 
distribution . For any -uniformly meta-stable learning algorithm , we have that with 
probability at least , 
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L(𝒜(S), μ) ≲ L(𝒜(S), S) + β̄ log(mn)log(1/δ) + M log(1/δ)/(mn)



Bound Transfer Generalization Gap

Table 1: Bounds on uniform meta-stability  for different families of learning problems. Here,  is 
the step-size for GD for task-specific learning,  is the step-size for GD for meta-parameter learning, 

 is the number of tasks during training,  is the number of training data for the task at test time.

β̄ η
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Proximal Meta-Learning with Stochastic Optimization 
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Excess Transfer Risk
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Excess Transfer Risk
Convex and smooth loss:

Convex and non-smooth loss:

Setting  gives us , where 

 is the approximation error.
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Thank you!


