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Problem setting | Autonomous Driving (AD) Tasks
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What are around? How will they go Where should | go?
in the future?

Challenge | Various weathers,
illuminations, and scenarios




Challenge - Robustness and Generalization

Common
non-critical cases

/ Various rare but

safety-critical cases
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(a) Long-tailed Distribution

Learned Policy

No data on
how to recover
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Motivation | Synthetic Data Generation for Driving

Real Data Collection Synthetic Data Generation

- Costly and laborious to collect and - A promising alternative to harvest annotated
annotate the data training data

- Collecting data on dangerous driving
can even pose arisk to life
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http://www.youtube.com/watch?v=qy3UPc3x-Q0&t=106
http://www.youtube.com/watch?v=TAflTfPckQs
http://www.youtube.com/watch?v=omviFk0gQxA

Trending in E2EAD | Synthetic Data Generation

. . BEVControl — generate images from
Driving Scene Generation perspective layouts via diffusion models
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BEVGen — generate realistic 2023.6 2023.12 2024.6

static images from layouts

BEV Layout Generated Street-View Images




Trending in E2EAD | Synthetic Data Generation

Panacea — first achieves temporal

BEV Sequence
’ consistency

DriveDiffusion — best in data
augmentation
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GenAD - state-of-the-arts with
highest video quality
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. . BEVControl — generate images from
Driving Scene Generation perspective layouts via diffusion models
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BEVGen — generate static 2023.6 2023.12 2024.6

images from BEV layouts

MagicDrive — generate multiview
images from BEV maps

BEV map - . 3D box Camera pose
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Trending in E2EAD | Synthetic Data Generation

Panacea — first achieves temporal
consistency

DriveDiffusion — best in data
augmentation

GenAD - state-of-the-arts with
BEVControl — generate images from highest video quality

Driving Scene Generation perspective layouts via diffusion models
Temporal

0,
BEVGen — generate static 2023.6 2023.12 2024.6

images from BEV layouts

MagicDrive — generate multiview
images from BEV maps

Drawbacks Benefits Realistic

- Appearance diversity: confined to learning on small-scale datasets with
limited scenarios (e.g., only urban streets or restricted weather conditions) |

- Layout diversity: the behaviors are tedious and lack complex or
safety-critical situations



http://www.youtube.com/watch?v=yrOYxLt9SCI

Trending in E2EAD | Synthetic Data Generation
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Generation via Simulators
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MetaDrivg - composing driving sce@arios CARLA — supporting development, training, and
for generalizable reinforcement learning validation of autonomous driving systems
Benefits
- Layout diversity: effortlessly generate scenes with various behaviors and provide accurate control over all
objects

Thombmat by Giodel Gata

s
Drawbacks

- Appearance diversity: only contain a limited amount of 3D assets, and they
lack a realistic visual appearance

CAR SPEED
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http://www.youtube.com/watch?v=q4V9GYjA1pE
http://www.youtube.com/watch?v=XyKGJm2OxjM&t=120
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Insights | Simulator-conditioned Generative Model
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- We propose a controllable and diverse scene generation paradigm through the simulator-conditioned
generative model, SimGen.

- Itlearns from real-world and simulated data and then generate diverse driving scenes based on the
simulator’s control conditions and rich text cues.




SimGen - The Big Picture

DIVA Dataset

Simu-conditioned Model

Applications

In-the-wild Driving Videos Data Augmentation

3 YouTube

Virtual Data

METADRIVE

o e T o e Closed-loop Evaluation
Cascaded Diffusion Model
for autonomous driving

Sudden braking & Keeping safe distance

Snowy road

How to formulate?

Simulation-to-Reality (Sim2Real) Gaps? Coliision

~ Top-down View

Forest path

Partial photo by courtesy of online resources.
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http://www.youtube.com/watch?v=WO_9Gd8q9Kw

DIVA Dataset - Appearance and Layout Diversity
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Comparisons Construction
DIVA is the best on scale, diversity, and - Including in-the-wild and virtual driving videos
annotations - Full auto labeling
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http://www.youtube.com/watch?v=fkps18H3SXY&t=1200

DIVA Dataset - Appearance and Layout Diversity

Examples of Generative Adversarial Scenarios
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Log Replay Safety-critical Scenarios Log Replay Safety-critical Scenarios

Credit to metadriverse.github.io/cat




DIVA Dataset - Appearance and Layout Diversity

Examples of Generative Adversarial Scenarios
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Dataset RealCond SimCond ExtraCond

SimGen - Overview
nuScenes v

DIVA-Real v

DIVA-Sim v e
- Input: text and scene record Real/SimCond: depth and segmentation;
. ) . . ExtraCond: rendered RGB, instance
- Stage 1 (CondDiff): converts SimCond into RealCond, representing real depth and  maps, and top-down views
segmentation

- Stage 2 (ImgDiff): an Adapter merges multi-source conditions into a unified control
condition and generates driving scene images.

SimGen CondDiff o o
P J— Empirical Study
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Condition Generation via Simulator ; :
TronSformOtlon Generctlon 2&3. Inherent flaws of 3D models and missing backgrounds




SimGen - Overview
]

CondDiff ImgDiff

ExtraCond offers additional information but
exists condition conflicts

Ours: mapping variable conditions into
fixed-length vectors and enabling a unified
control input interface

- Naive approach: training a domain transfer model requires -
paired data far exceeding public datasets

- Ours: CondDiff injects noise-added SimCond into the -
intermediate sampling process and converts it into realistic
conditions via continuous denoising
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Condition Generation via Simulator
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Experiments

Quantitative Results

Quality Diversity Controllability Applications on data augmentation
Method Dataset FID] Dpix T Method Map Seg Object Detection Method Map Seg Object Det
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Experiments
I

Diverse Appearances

Conditions SimGen-nuSc

Columbia Chicago



Experiments
I

Diverse Appearances
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Experiments
I

Diverse Appearances

Small Town | Bangkok City street



Experiments
I

Diverse Appearances

Blue sedan | KI lumpur Blizzard days



Experiments
I

Diverse Appearances

LEGO Ukiyo-e Minecraft Super Mario




Experiments
I

Diverse Appearances

LEGO Ukiyo-e Minecraft Super Mario




Experiments
I

Safety-critical Layouts Efficiency of Simu-conditions

Crossroad meeting Top-down

View

Applications on Closed-loop Evaluation

Sudden braking & Keeping safe distance
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Conclusions
]

Grab-and-go

- Asimulator-conditioned diffusion model, SimGen, that learns to generate diverse driving scenarios by
mixing data from the simulator and the web.

- A novel dataset containing massive web and simulated driving videos that ensure diverse scene
generation and advanced simulation-to-reality research is collected.

Limitations

- SimGen is not designed for video generation.

- SimGen does not cope with common settings such as
multi-view generation.

- Inheriting the drawbacks of diffusion models, SimGen
suffers from long inference time, which may impact
the applications like closed-loop training.




END



