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Key Idea: Analysing these questions in highly controlled setting can help us generate plausible hypotheses.

Using the proposed, synthetic setup, we investigate three different safety fine-tuning protocols.
1) supervised safety fine-tuning (SSFT)
2) direct preference optimization (DPO)

3) unlearning
with medium (n, ) and small (ng ) learning rates. Finally, we verify (some) our claims on Llama models



Synthetic setup for systematic study

Ideal Objectives (Capture key concepts of safety fine-tuning and jailbreaks):

1 Fine-grained control over generation of safe and unsafe samples to analyze different safety fine-tuning
protocols together !!

2 Fine-grained control over generation of different types of jailbreaks !!

Key design insight: An instruction can be modelled as a combination of operator and operand.
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Operator Operand Output

Conceptually, we abstract an instruction to an LLM as a composition of two components:
1) Operators: We model them using bijective mappings
2) Operand: We model them using probabilistic context free grammar (PCFG)



Effect of safety fine-tuning (Feature space analysis)

High level idea: Analyse if there is any clustering possible in feature space



Effect of safety fine-tuning (Feature space analysis)

High level idea: Analyse if there is any clustering possible in feature space

2

04

=2

Instruction fine-tuned

—— 1

0{o—a—— ot

=5

1 2 3 4 5 6

1 2 3 4 5 6
Unlearning (nu)

1 2 3 4 5 6

DPO (nu)

o1

-1

=24

-3

...................
o ®

=14

-24

.,
yeasst It ety nnatne,
Ll

"u,
- PR T
et

10 20 30
Llama-2 7B

1 10 20 30

Llama-2 chat 7B

1 10 20
Llama-3 8B

10 20 30
Llama-3 chat 8B

A relationship
between the strength
of safety fine-tuning
and separation
between the clusters
is observed.



Effect of safety fine-tuning (Feature space analysis)

High level idea: Analyze if there is any clustering possible in feature space
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Observation 1 }

Safety fine-tuning leads to formation of clusters of activations corresponding to safe versus
unsafe samples, where the separation between clusters increases as better methods are used.
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High level idea: Analyse alignment between column spaces of AW and W!T
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Why are clusters formed? — Parameter space analysis

High level idea: Analyse alignment between column spaces of of AW and W!T

Analysis over the
course of training:
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The column-space of the transformation, C(AW), is more aligned with the null-space

N (W{;) than it is with the column-space C(Wyt). Hence, samples processed by the trans-
formation versus not will have rather distinct activations, enabling clustering.




AW is specialized for unsafe samples

High level idea: Analyse the effect on norm of activations on being processed by AW
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AW is specialized for unsafe samples

High level idea: Analyse the effect of norm of activations on being processed by AW
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Analysis over the
course of training:
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r—[ Observation 3 }

Pre-activations of unsafe inputs have a larger projection onto the row-space R(AW) com-
pared to pre-activations of safe inputs. That is, AW preferentially impacts unsafe samples.




Understanding why safety fine-tuning fails?
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Cluster separation decreases with increase in attack strength

Feature space analysis
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Jailbreaks evade the null space projection by AW , thus AW is not able to generalize to them.

r—[ Observation 5 | \

Jailbreak and adversarial attacks yield intermediate features that are exceedingly similar to
safe samples, hence evading the processing by AW required for refusal of an input.




Thank You




